<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ADDITION OR REVISION</th>
<th>DATE</th>
</tr>
</thead>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION I - INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-01</td>
<td>Authorization</td>
<td>1</td>
</tr>
<tr>
<td>1-02</td>
<td>Location</td>
<td>1</td>
</tr>
<tr>
<td>1-03</td>
<td>Project Description</td>
<td>2</td>
</tr>
<tr>
<td>1-04</td>
<td>Construction Data</td>
<td>2</td>
</tr>
<tr>
<td>SECTION II - LOCAL COOPERATION REQUIREMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-01</td>
<td>Requirements for local cooperation</td>
<td>3</td>
</tr>
<tr>
<td>2-02</td>
<td>Assurances Provided by Local Interests</td>
<td>3</td>
</tr>
<tr>
<td>2-03</td>
<td>Acceptance by the State Reclamation Board</td>
<td>3</td>
</tr>
<tr>
<td>SECTION III - MAINTENANCE AND OPERATION - GENERAL PROCEDURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-01</td>
<td>Reference to Approved Regulations</td>
<td>4</td>
</tr>
<tr>
<td>3-02</td>
<td>Intent of Regulations</td>
<td>4</td>
</tr>
<tr>
<td>3-03</td>
<td>Purpose of This Manual</td>
<td>4</td>
</tr>
<tr>
<td>3-04</td>
<td>Definitions</td>
<td>5</td>
</tr>
<tr>
<td>3-05</td>
<td>General Provisions of Regulations</td>
<td>5</td>
</tr>
<tr>
<td>3-06</td>
<td>Assistance to be Furnished by the District Engineer</td>
<td>7</td>
</tr>
<tr>
<td>3-07</td>
<td>Responsibilities of the Superintendent</td>
<td>7</td>
</tr>
<tr>
<td>3-08</td>
<td>Inspection Procedure</td>
<td>11</td>
</tr>
<tr>
<td>SECTION IV - FEATURES OF THE PROJECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBJECT TO FLOOD CONTROL REGULATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-01</td>
<td>Levees</td>
<td>13</td>
</tr>
<tr>
<td>4-02</td>
<td>Structures</td>
<td>13</td>
</tr>
<tr>
<td>4-03</td>
<td>Pumping Plant</td>
<td>13</td>
</tr>
</tbody>
</table>
V MECHANICAL AND ELECTRICAL FEATURES

5-01 Description
5-02 Inspection
5-03 Maintenance
5-04 Records

SECTION VI O&M MANUAL FOR SAN JOAQUIN RIVER PUMPING PLANT

6-01 Description of Hydrologic Facilities
6-02 Operation and Maintenance of Hydrologic Facilities
6-03 Semi-Annual Stage Reports

EXHIBITS

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Federal Flood Control Regulations</td>
<td>1 and 2</td>
</tr>
<tr>
<td>A-1</td>
<td>Location Map and Drainage Layout</td>
<td>1 sheet</td>
</tr>
<tr>
<td>A-2</td>
<td>Sump Capacity Curve</td>
<td>1 sheet</td>
</tr>
<tr>
<td>A-3</td>
<td>Stage-Time-Flow Curves</td>
<td>1 sheet</td>
</tr>
<tr>
<td>A-4</td>
<td>Pump Characteristics</td>
<td>1 sheet</td>
</tr>
<tr>
<td>A-5</td>
<td>Pump Discharge</td>
<td>1 sheet</td>
</tr>
<tr>
<td>A-6</td>
<td>Rating Curve for Gravity Flow</td>
<td>1 sheet</td>
</tr>
<tr>
<td>B</td>
<td>"As Constructed" Drawings</td>
<td>Unattached</td>
</tr>
<tr>
<td>C</td>
<td>Manufacturer's Data</td>
<td>1 sheet</td>
</tr>
<tr>
<td>D</td>
<td>Photographs of Pumping Plant</td>
<td>1 thru 7</td>
</tr>
<tr>
<td>E</td>
<td>Letter of Acceptance by State Reclamation Board</td>
<td>1 sheet</td>
</tr>
<tr>
<td>F</td>
<td>Inspection Check List</td>
<td>1 thru 8</td>
</tr>
<tr>
<td>G</td>
<td>Lubrication Schedule</td>
<td>1 thru 3</td>
</tr>
<tr>
<td>H</td>
<td>Sample Log for Operating Plant</td>
<td>1 thru 5</td>
</tr>
</tbody>
</table>
SUPPLEMENT TO STANDARD
OPERATION AND MAINTENANCE MANUAL

LOWER SAN JOAQUIN RIVER & TRIBUTARIES PROJECT, CALIFORNIA

UNIT NO. 6-A

LOWER SAN JOAQUIN RIVER PUMPING PLANT

SECTION I

INTRODUCTION

1-01. Authorization. The Lower San Joaquin River and Tributaries Project (of which the San Joaquin River Levees is a part) was authorized by the Flood Control Act of 22 December 1944, Public Law 534, 78th Congress, 2nd Session, Section 10 of which reads as follows:

"...The plan of improvement for flood control and other purposes on the Lower San Joaquin River and tributaries, including Tuolumne and Stanislaus Rivers, in accordance with the recommendation of the Chief of Engineers in Flood Control Committee Document Numbered 2, 78th Congress, 2nd Session, is approved, and there is hereby authorized $8,000,000 for initiation and partial accomplishment of the plan..."

Parallel authorizing legislation by the State of California is contained in Section 33 of the Water Resources Act, Chapter 1514, California Statutes of 1945.

Public Law 327, 84th Congress, 1st Session, approved 9 August 1955, authorized modification of the project for flood protection on the San Joaquin River and tributaries, California, to provide for construction by responsible local interests, at no cost to the United States, of levees and channel improvements, as required, upstream of Merced River, in lieu of acquiring flowage easements, subject to approval by the Chief of Engineers. Chapter 1048, 1955 Statutes, State of California, authorized the State Reclamation Board to execute the substitute plan for the area along the San Joaquin River upstream of the mouth of the Merced River.

1-02. Location. The Pumping Plant is a part of the Lower San Joaquin and Tributaries project, a major portion of which consists of Federal levee and channel improvement and bank protection along the Lower San Joaquin River from the
mouth of the Merced River to the Delta. The pumping plant lies about 4-1/2 miles East of the town of Patterson and about 6-1/2 miles North of the town of Crow's Landing at a point behind the East levee of San Joaquin River about half way between Patterson Bridge and Lateral No. 5 drain of Turlock Irrigation District.

1-03. Project Description. The pumping plant consists of three drainage pumps with a rated capacity of 30,000 gallons per minute each at 13.7 feet static head, and a sump with an active storage capacity of 210 acre feet, exclusive of the capacity of the diversion channel leading from the overflow weir at Lateral No. 5 to the sump. Facilities are provided for gravity flow of waters carried by Lateral No. 5 through the levee at Lateral No. 5 when San Joaquin River is at low stage. Facilities are provided for gravity flow of local drainage waters through the pumps. As the gravity flow capacity through the pumps is insufficient to pass the normal gravity flows through the Lateral No. 5 drain, the pumping station must be maintained in an energized state ready for automatic operation in the event the outlet through the levee at Lateral No. 5 becomes inoperative for any reason.

For more detailed description of the pumping plant facilities see paragraph 5-01 of this manual.

SECTION II

LOCAL COOPERATION REQUIREMENTS

2-01. Requirement of Local Cooperation. As stated in F.C.C.D No. 2, 78th Congress, 2nd Session, and Public Law 327/84/1, local interests are required to (a) bear the cost of all improvements as required along the San Joaquin River, upstream from the mouth of the Merced River; (b) furnish all lands, easements, and rights-of-way necessary for construction or improvement of levees by the Federal Government downstream from the mouth of Merced River; (c) furnish flowage rights to overflow certain lands along the San Joaquin River, below the mouth of the Merced River; (d) bear expense of utility alterations and relocations; (e) hold and save the United States free from damages due to the construction works and their subsequent maintenance and operation; and (f) maintain all levees and channel improvements after completion in accordance with regulations prescribed by the Secretary of the Army.

2-02. Assurances Provided by Local Interests. The State of California by legislation enacted in 1955 has agreed to furnish the required cooperation. Section 13657 of the State Water Code states:

"Except as otherwise provided in Chapters 1 and 2 of this part, the Reclamation Board shall give assurances satisfactory to the Secretary of War that the local cooperation, required by Section 3 of the Act of Congress approved December 22, 1944 (Public, numbered 534, Seventy-eighth Congress, Second Session), and Section 2 of the Act of Congress, approved August 18, 1941 (Public, numbered 228, Seventy-eighth Congress, First Session), will be furnished by the State in connection with the flood control projects authorized and adopted in Sections 12648, 12650, 12651, 12652, 12654, and 15656.5 and on any flood control projects on any stream flowing into or in the Sacramento Valley or the San Joaquin Valley hereinafter approved and authorized by Congress."

2-03. Acceptance by the State Reclamation Board. Responsibility for operating and maintaining the completed works was officially accepted by the Reclamation Board of the State of California by letter dated March 30, 1961, as shown on the attached letter of acceptance, EXHIBIT E.
3-01. Reference to Approved Regulations. This manual is submitted in accordance with provisions of Title 33—Navigation and Navigable Waters, Chapter II, Corps of Engineers, Department of the Army, Part 208—Flood Control Regulations, Maintenance and Operation of Flood Control Works, approved by the Secretary of the Army, 9 August 1944, a copy of which is included as EXHIBIT A, Sheets 1 and 2.

3-02. Intent of Regulations. The general intent of the regulations approved by the Secretary of the Army is stated in paragraph 208.10 (a) (1) as follows: "The structure and facilities constructed by the United States for local flood protection shall be continuously maintained in such a manner and operated at such times and for such periods as may be necessary to obtain the maximum benefits."

The principle mission of the Corps of Engineers, during flood emergencies, is to insure that flood control works are properly operated and maintained and offer technical advice to enable local interests to obtain maximum flood protection. All other matters become secondary and will yield precedence to the accomplishment of the above-stated missions. During flood periods local interests maintain close liaison with the office of the District Engineer, Corps of Engineers. However, in the event it is evident that all available county and local resources are insufficient to cope with the situation and the necessity for an emergency proclamation is anticipated, requests for State assistance in flood fighting should properly be made direct to the Department of Water Resources, which is the State agency designated to receive requests from local agencies for assistance in flood fighting. This agency is authorized to request Federal assistance from the Corps of Engineers when State and local resources are insufficient to cope with the situation. Therefore, it is desired to emphasize that requests for Federal assistance in flood fighting should be made only when it is evident that County, State and/or other local equipment and manpower will be exhausted and local resources are insufficient to cope with the flood emergency situation.

3-03. Purpose of this Manual. In view of the large number of local flood protection projects authorized by Congress and the repetitious nature of regulations to govern maintenance and operation of each individual project, and in order that local
interests may be fully aware of the extent of the obligations assumed by them in furnishing assurances of local cooperation for projects to be constructed in the future, the general regulations described above were established by the Secretary of the Army. The general regulations approved by the Secretary of the Army, August 1941, were intended to be sufficiently broad in scope and general in nature as to be applicable to all flood-protection projects for which such regulations are required by law. Section 208.10 (a) (10) of the regulations read as follows:

"The War Department will furnish local interests with an Operation and Maintenance Manual for each completed project, or separate useful part thereof, to assist them in carrying out their obligations under these regulations." This manual has, therefore, been prepared to furnish local interests with information on the project works and advise as to the details of the operation and maintenance requirements applicable to this particular project, to state procedure required by the Department of the Army, and to indicate satisfactory methods of flood fighting operations and emergency repairs. The project works are to be maintained and operated in accordance with the Flood Control Regulations referred to above and interpretations thereof contained herein.

3-04. Definitions. The term "District Engineer" shall be defined to mean the District Engineer of the Sacramento District, Corps of Engineers, U. S. Army, or his authorized representative. The term "right bank" or "left bank" shall be defined to mean the right or left bank or side, respectively, of a stream or channel when facing downstream.

3-05. General Provisions of Regulations: In addition to that quoted in paragraph 3-02 above, the general provisions of the Flood Control Regulations, contained in paragraphs 208.10 (a) (2) to 208.10 (a) (9), both inclusive, are quoted as follows:

"(2) The State, political subdivision thereof, or other responsible local agency, which furnished assurance that it will maintain and operate flood control works in accordance with regulations prescribed by the Secretary of War, as required by law, shall appoint a permanent committee consisting, or headed by an official hereinafter called the "Superintendent", who shall be responsible for the development and maintenance of, and directly in charge of an organization responsible for the efficient operation and maintenance of all structures and facilities during flood periods and for continuous
inspection and maintenance of the project works during periods of low water, all without cost to the United States.

(3) A reserve supply of materials needed during a flood emergency shall be kept on hand at all times.

(4) No encroachment or trespass which will adversely affect the efficient operation or maintenance of the project works shall be permitted upon the rights-of-way of the protective facilities.

(5) No improvement shall be passed over, under or through the walls, levees, improved channels or floodways, nor shall any excavation or construction be permitted within the limits of the project right-of-way, nor shall any change be made in any features of the works without prior determination by the District Engineer of the War Department or his authorized representative that such improvement, excavation, construction, or alteration will not adversely affect the functioning of the protective facilities. Such improvements or alterations as may be found to be desirable shall be constructed in accordance with standard engineering practice. Advice regarding the effect of proposed improvements or alterations on the functioning of the project and information concerning methods of construction acceptable under standard engineering practice shall be obtained from the District Engineer, or, if otherwise obtained, shall be submitted for his approval. Drawings or prints showing such improvements or alterations as finally constructed shall be furnished the District Engineer after completion of the works.

(6) It shall be the duty of the Superintendent to submit a semi-annual report to the District Engineer covering inspection, maintenance, and operation of the protective works.

(7) The District Engineer or his authorized representative shall have access at all times to all portions of the protective works.
(8) Maintenance measures or repairs which the District Engineer deems necessary, shall be promptly taken or made.

(9) Appropriate measures shall be taken by local authorities to insure that the activities of all local organizations operating public or private facilities connected with the protective works are coordinated with those of the Superintendent's organization during flood periods."

*In this case the "Superintendent" will be a representative of the State Reclamation Board.

3-06. Assistance to be Furnished by the District Engineer. The District Engineer will:

a. Furnish to local interests "As Constructed" drawings of the project works at the time they are transferred.

b. Make periodic inspections of the project works and notify local interests of any repairs or maintenance measures which the District Engineer deems necessary in addition to the measures taken by local interests.

c. Submit to the Office, Chief of Engineers, all cases of noncompliance with full details thereof for determination of corrective measures to be taken.

d. Make prior determination that any proposed encroachment, improvement, excavation, or construction within the right-of-way, or alteration of the project works, will not adversely affect the functioning of the protective facilities, and to furnish local interests with an approval thereof in writing.

e. Assist local interests as may be practicable, in their duties of ascertaining storm developments having flood-producing potentialities, assembling flood-fighting forces and materials, and initiating and carrying out flood-fighting operations.

3-07. Responsibilities of the Superintendent. In line with the provisions of the Flood Control Regulations, the general duties of the Superintendent include the following:

a. Training of Key Personnel: Key personnel shall be trained in order that regular maintenance work may be performed efficiently and to insure that unexpected problems related to flood control may be handled in an expeditious and orderly manner. The Superintendent should have available the
names, addresses, and telephone numbers of all his key men and a reasonable number of substitutes. These key men should, in turn, have similar data on all of the men who will assist them in the discharge of their duties. The organization of key men should include the following:

(1) An assistant to act in the place of the Superintendent in case of his absence or indisposition.

(2) Sector foremen in sufficient number to lead maintenance patrol work of the levee, inspect the channel, and operate the gate structures properly during flood periods. High qualities of leadership and responsibility are necessary for these positions.

b. Files and Records. The Superintendent shall maintain a file of reports, records, and drawings concerning the project works, readily available at all times to the District Engineer.

c. Encroachment or Trespass on Right-of-Way. In accordance with the provisions of Flood Control Regulations 208.10 (a) (4), no encroachment or trespass which will adversely affect the efficient operation or maintenance of the project works shall be permitted on the rights-of-way for the protective facilities. The Superintendent will, therefore, cause notices to be posted at conspicuous places along the project right-of-way directing public attention to this regulation. The Superintendent shall arrange for the prosecution of offenders under local ordinances and report action taken to the State Reclamation Board.

d. Permits for Improvements or Construction within the Project Right-of-Way. All requests for permits for construction of any improvements of any nature within the limits of the project right-of-way shall be referred to the District Engineer through the State Reclamation Board for determination that such construction will not adversely affect the stability, safety, and functioning of the protective facilities, and for definition of conditions under which permit should be granted. These conditions will include, among others, the following items:

(1) That all work shall be performed:

(a) In accordance with standard engineering practice and in accordance with plans and specifications approved by the District Engineer or his authorized representative; drawings or prints of proposed improvements or alterations to the existing flood control works must be submitted for approval to the
State Reclamation Board sufficiently in advance of the proposed construction to permit adequate study and consideration of the work.

(b) To the satisfaction of the District Engineer.

(2) After completion of the work, "As Constructed" drawings or prints, in duplicate showing such improvements as finally constructed shall be furnished the District Engineer.

e. Coordination of Local Activities. In accordance with the provisions of Flood Control Regulations, paragraph 208.10 (a) (9), the Superintendent will, during periods of flood flow, coordinate the functions of all agencies, both public and private, that are connected with the protective works. Arrangements shall be made with the local law enforcement agencies, street departments, and railroad and utility companies for developing a coordinated flood-fighting program, and an outline of this program shall be filed with the District Engineer.

f. Inspection.

(1) Flood Control Regulations, paragraph 208.10 (c) (1), are quoted in part as follows:

"(b) Levees (1) Maintenance Periodic inspections shall be made by the Superintendent to insure that....... maintenance measures are being effectively carried out----- Such inspections shall be made immediately prior to the beginning of the flood season, immediately following each major high water period, and otherwise at intervals not exceeding 90 days and such intermediate times as may be necessary to insure the best possible care of the levee."

(2) The suggested check lists and instructions shown in EXHIBIT F, Sheets 1 to 8, inclusive, are to be followed in each inspection to insure that no features of the protective system are overlooked. Carbon copy of the inspector's original field notes as recorded on the check list shall be transmitted to the District Engineer immediately following each inspection, and one copy included as an enclosure to the semi-annual report as provided in paragraph 3-07 (h) (1) of this manual.
g. Maintenance.

(1) Flood Control Regulations, paragraph 208.10 (b) (1) are quoted in part as follows:

"(b) (1) Maintenance. The superintendent shall provide at all times such maintenance as may be required to insure serviceability of the structures in time of flood. Measures shall be taken to exterminate burrowing animals, and to provide for removal of wild growth and drift deposits, and repair of damage caused by erosion or other forces... Immediate steps will be taken to correct dangerous conditions disclosed by such inspections. Regular maintenance repair measures shall be accomplished during the appropriate season as scheduled by the Superintendent."

(2) Full responsibility for making the repairs and the methods used is placed on the Superintendent, but the experience and facilities of the District Engineer will be available to him for advice and consultation.

(3) All repairs shall be made in accordance with standard engineering practice, to line and grade and in accordance with details shown on the construction drawings for the project works, copies of which are included in EXHIBIT B. No change or alteration shall be made in any feature of the project works without prior determination by the District Engineer that such alteration will not adversely affect the stability and functioning of the protective facilities. Plans and specifications of all changes or alterations that may be proposed by the Superintendent shall be submitted to the District Engineer for investigation and approval before prosecution of the work.

h. Reports.

(1) Semi-Annual Report. In accordance with the provisions of the Flood Control Regulations, paragraph 208.10 (a) (6), the Superintendent shall submit within a 10-day period following 1 December and 1 June of each year, a semi-annual report to the District Engineer covering
inspection, maintenance, and operation of the protective works. This report will present a statement of:

(a) The physical conditions of the protective works as summarized from the logs of inspection.

(b) Flood behavior of the protective works, and flood-fighting activities during the period.

(c) Prosecutions for encroachment or trespass.

(d) Permits issued for right-of-way or use of right-of-way.

(e) Permits issued for improvements or construction within the project right-of-way.

(f) Maintenance measures taken; nature, date of construction, and date of removal of temporary repairs; date of permanent repairs.

(g) Fiscal statement of cost and maintenance and operation for the period.

3-08. Inspection Procedure. Since the enactment of State Legislation of Chapter 1528, Statutes of 1947, the Department of Water Resources, State of California, has made semi-annual inspections of all levees of authorized flood control projects in the Sacramento-San Joaquin drainage basin pursuant to the Federal Regulations of 16 August 1944 (Title 33), and reports its findings to the local agency, the State Reclamation Board and the Sacramento District, Corps of Engineers, U.S. Army. This activity, initiated pursuant to Section 208.10 (a) of the Federal Regulations, has in effect provided for transfer from the local agencies to the State Department of Water Resources the obligation of compliance with Sections 6371, 6372, and 6373 of the Water Code of the State of California. These sections of the Code require the local responsible agencies to submit a report to the State Department of Water Resources on or before 1 June of each year on the condition of the levees and channels within their jurisdiction. Supervisory powers and duties of the Department are applicable to all works of the authorized projects maintained and operated by the local agencies without regard to status of completion, or expenditure of Federal funds on the construction of such works.
Upon completion of the fall inspection, the State Department of Water Resources publishes an annual report entitled, "Status of Project Levee Maintenance" which indicate the degree of proficiency attained by each obligated local agency in providing required maintenance.
SECTION IV

FEATURES OF THE PROJECT SUBJECT TO FLOOD CONTROL REGULATIONS

4-01. Levees. The levee adjoining the Pumping Plant is subject to the Flood Control Regulations and is more fully described in the Supplement to the Standard Operation and Maintenance Manual for the San Joaquin River and Tributaries Project, entitled, "Unit No. 6, East Levee of the San Joaquin River in Reclamation District No. 2063 and 2091."

4-02. Structures. The pumping plant, sump, feed canal, discharge canal, pipe between sumps, and outlet structure are subject to the same Flood Control Regulations as the levees and channels, therefore, the operation, maintenance and inspection of these features shall be coordinated with that of the levees and channels.

4-03. Pumping Plant.

a. Description. The pumping plant is as described in paragraph 5-01 of this manual.

b. Maintenance. Pertinent Requirements of the Code of Federal Regulations, paragraph 208.10 (f) (1) are quoted in part as follows:

"(f) Pumping Plants (1) Maintenance. Pumping plants shall be inspected by the Superintendent at intervals not to exceed 30 days during flood seasons and 90 days during off-flood season to insure that all equipment is in order for instant use. At regular intervals, proper measures shall be taken to provide for cleaning plant, buildings and equipment, repainting as necessary, and lubricating all machinery. Adequate supplies of lubricants for all types of machines shall be kept on hand at all times.......... All equipment, including switch gear, transformers, motors, pumps, valves, and gates shall be trial operated and checked at least once every 90 days. Megger tests of all insulation shall be made whenever wiring has been subjected to undue dampness and otherwise at intervals not to exceed one year. Only skilled electricians and mechanics shall be employed on tests and repairs. Repairs requiring removal of equipment from the plant shall be made during off-flood seasons insofar as practicable."

-13-
c. Operation. Pertinent Requirements of the Code of Federal Regulations, EXHIBIT A, paragraph 208.10 (f) (2) are quoted in part as follows:

* "(f) (2) Operation. Competent operators shall be on duty at pumping plants whenever it appears that necessity for pump operation is imminent.* The operator shall be familiar with the equipment manufacturer's instructions and drawings and with the "Operating Instructions" for each station. Immediately upon final recession of flood waters, the pumping station shall be thoroughly cleaned, pump house flushed, and equipment thoroughly inspected, oiled and greased. A record or log of pumping plant operation shall be kept for each station, a copy of which shall be furnished the District Engineer following each flood season."

*Note: This part of the quote from the Code of Federal Regulations is inapplicable for this automatically controlled plant.

The frequency of visits by competent operators to check pumping operations will vary greatly and schedules will have to be flexible enough to meet changing conditions, from extreme emergency flood conditions where continuous duty of operator is warranted, to visits every 4 hours, 8 hours, or 24 hours.
SECTION V
MECHANICAL AND ELECTRICAL FEATURES

5-01. Description.

a. General. The pumping and flow control facilities consist of a combination of (a) a gravity drain through the levee at the end of Turlock Irrigation District Lateral No. 5 which is sufficient to pass all flows that do not raise the water surface in this canal to more than elevation 42.5; (b) a drainage channel connecting this Lateral No. 5 drain to the sump of the pumping plant approximately one and one-half miles downstream from Lateral No. 5 and which channel was constructed parallel to the new right bank levee; and (c) a pumping plant in combination with the above sump. Item (c) consists principally of three pumps and appurtenances. The pumping plant structure is an open one in the sump, the pumps are suspended from the deck of the structure. A steel trash rack surrounds the open structure so that water from the sump cannot get into the pumps except through the trash rack. Three drainage pumps are provided for controlling the water level in the collecting sump and are automatically controlled by float switches. The pumps allow gravity flow to occur through the pump discharge conduits when the water level in the sump is below the level required to activate the float controls. Each pump discharges into a steel discharge conduit and thence into one of the barrels of the three-barreled reinforced concrete conduit structure through the levee. Each barrel is provided with a 42 inch square emergency slide gate in a reinforced concrete well which is normally electrically operated but also may be manually operated. The slide gates are electrically interlocked with the pumps to prevent operation of the pumps when the slide gates are in the closed position. The outlet end of each barrel is provided with an automatic drainage gate to prevent back flow. The drainage water, after passing the automatic drainage gates is conveyed to San Joaquin River in an open channel, that portion of this channel immediately below the gates being protected with rip-rap.

b. Drainage Pumps.

(1) Type. Each sump pump is a vertical, axial flow with submerged open impeller type, directly connected to a vertical electric motor. Pumps are designed to permit ready withdrawal of the entire pump, including discharge column elbow, housing and suction bell, through the opening in the floor at the motor.
Capacity. Each pump is capable of discharging the required design capacities listed in lines 4, 6, and 11 of the following table at total dynamic heads corresponding to the static head listed in lines 3, 5, and 10 respectively. They are capable of operating at total dynamic heads corresponding to static heads between those listed in lines 1 and 5 without exceeding the motor horsepower listed in line 12, and between those listed in lines 5 and 7 without exceeding the motor horsepower listed in line 12 by more than the motor service factor of 1.15. At static heads listed in line 8 the pumps are capable of starting and reaching full speed without exceeding the motor horsepower listed in line 12 by more than the motor service factor of 1.15. At static heads listed in line 9 the pumps shall be capable of starting and reaching full speed without exceeding the horsepower listed in line 12 by more than the motor overload factor of 1.25.

Table No. 1.

<table>
<thead>
<tr>
<th>(1) Minimum Operating Static Head</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Sump Elev. at Min. Oper. Static Head</td>
<td>51.5</td>
</tr>
<tr>
<td>(3) Min. Design Static Head</td>
<td>6.0</td>
</tr>
<tr>
<td>(4) Capacity at Min. Design Static Hd. (G.P.M.)</td>
<td>35,000</td>
</tr>
<tr>
<td>(5) Maximum Design Static Head</td>
<td>16.0 (a)</td>
</tr>
<tr>
<td>(6) Capacity at Max. Design Static Hd. (G.P.M.)</td>
<td>28,000</td>
</tr>
<tr>
<td>(7) Max. Operating Static Head</td>
<td>20.5 (b)</td>
</tr>
<tr>
<td>(8) Design Starting Static Head</td>
<td>15.0 (c)</td>
</tr>
<tr>
<td>(9) Max. Starting Static Head</td>
<td>19.5 (c)</td>
</tr>
<tr>
<td>(10) Rated Design Static Head</td>
<td>13.7</td>
</tr>
<tr>
<td>(11) Capacity at Rated Design Static Hd. (G.P.M.)</td>
<td>30,000</td>
</tr>
<tr>
<td>(12) Max. Motor Horsepower</td>
<td>150</td>
</tr>
</tbody>
</table>

Note (a) Water surface in sump at elev. 37.0 and water surface in river at elev. 53.0 STET selected river stage concurrent with maximum inflow rate.

Note (b) Water surface in sump at elev. 37.0 and water surface in river at elev. 57.5 which is project flood stage.

Note (c) Water surface in sump at elev. 38.0.
(4) **Efficiency.** The efficiency of pumps is specified to be such that nominal rating of the motor required will not exceed that listed in line 12 of table in subparagraph (3) above.

(5) **Specific Speed.** The specific speed of each pumping unit at all stages of water sump and river levels are specified not to exceed the value computed in accordance with Figure No. BFL6, Tenth Edition of the Hydraulic Institute.

(6) **Total Dynamic Head.** The total dynamic head consists of the static head (difference between water surfaces in sump and in river) plus the losses through the system. The losses through the system do not include losses in the pump itself and in the discharge column. The required capacity of each pump under actual operating conditions is shown, together with the static heads and corresponding total dynamic heads under the design conditions in the following tabulation.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Static Head (feet)</th>
<th>Total Dynamic Head (feet)</th>
<th>Required Capacity (G.P.M.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Design Head</td>
<td>6.0</td>
<td>7.5</td>
<td>35,000</td>
</tr>
<tr>
<td>Max. Design Head</td>
<td>16.0</td>
<td>17.0</td>
<td>28,000</td>
</tr>
</tbody>
</table>

c. **Float Operated Controllers.**

(1) **General.** Float operated controls are provided for automatic operation of the pumps in accordance with the prescribed operating procedure. The float control assembly consists essentially of a separate float well and float control device operating off the water level in the sump.

(2) **Drainage Sump Float Controls.** The sump float control consists of a ten-inch float well and a float control device designed for automatic control of all three pumps. The float control device is a type M-3 "Selectrol" as manufactured by the Automatic Control Company of St. Paul, Minnesota. The switch mechanism consists of a separate enclosed mercury contactor for each of three circuits which open and close in any desired combination by means of discs revolving on a
stainless steel drive shaft. Each disc has a removable telescoping cam segment. The shaft is driven through gears by a ceramic float, approximately 7-inch in diameter, suspended by a stainless steel tape from a cast aluminum sheave. An adjustable clutch is provided to allow any desired drawdown for all circuits except one which is handled separately by an adjustable compensating device to allow a greater operating range for the first stage of the first pump. Each circuit is provided with a manual transfer plug. The total float travel under normal operation will be 14.5 feet. The sump float control operates to start the pumps on a rising sump level at the respective elevations designated as "STARTS", in the table below, and stops the respective pumps on a falling sump water level at the elevations designated as "STOP".

Table No. 2

<table>
<thead>
<tr>
<th>Action</th>
<th>Pump #1</th>
<th>Pump #2</th>
<th>Pump #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Start"</td>
<td>38.0</td>
<td>40.0</td>
<td>42.0</td>
</tr>
<tr>
<td>"Stop"</td>
<td>37.0</td>
<td>39.0</td>
<td>41.0</td>
</tr>
</tbody>
</table>

(3) **Summer Setting of Controls.** During the dry months of July through November pumps No. 1 and 2 should be locked in the off position and allow pump No. 3 to come on at elev. 42.0 as shown in Table No. 2 above. This is to fulfill the local requirement that the water surface in the sump be less than elev. 42 during the summertime.

5-02. **Inspection.**

a. **General.** Periodic inspections are required to detect incipient faults before serious damage takes place, therefore, the importance of making these inspections cannot be over-emphasized. The frequency and extent of inspection required in a measure will be influenced by the conditions under which the equipment is required to operate including whether or not the particular operation is relatively continuous or periodic for the period concerned. Once each year the entire mechanical and electrical installation should be given a thorough detailed inspection. The regular more frequent inspections are made to make certain that all parts of the equipment including controls are in operable condition and properly lubricated; that no parts are missing; that all painted surfaces are covered with adequate coats of protective paints; that there is no evidence of rust; and that the entire plant is in a clean and presentable condition.
In order that no items of inspection will be overlooked, an inspection schedule listing all items requiring inspection shall be carried during the inspection as guide, check list and record. Exhibits "F", "G", and "H" of this manual will serve as a guide and check list for conducting the inspections and preparation of reports. For records required to be maintained and reports to be made see Exhibit "A" and paragraph 5-04 of this manual.

b. Drainage Pump - Motor Units.

(1) Pump.

(a) During periods of pumping operations, daily inspections should be made to ascertain that there is sufficient lubricant for the pump bearings and that the pump and motor are operating smoothly, and that there is no abnormal vibration of the assembly. The operator should be instructed to immediately shut off the pump, should an unusual noise or vibration develop, rather than wait to consult with someone else, inasmuch as by prompt action at the moment trouble first develops, serious damage to the pump may be prevented. Noise, vibration, etc., may be due to a worn or damaged bearing, loose anchors, obstruction in pump such as rocks, wood, etc., or other possible causes.

(b) Check the oil and grease lubricating pipes provided to carry the lubricant to the pump bearings and note any indication of leakage at any point with particular attention to the connection at the pump housing. Also make note of any unusual noise that might indicate that the lubricant is not reaching the bearings. The grease seal packing rings on the pump drive shaft should be checked occasionally as they may become dry and harden to the extent of scoring the shaft and/or failing to adequately retain the lubricant. For location of the packing rings refer to the applicable shop drawings. Occasionally check the grease lubrication pipe which runs to the bottom of the pump suction bowl to insure that it has not broken off or otherwise damaged.

(c) Inspect the anchors at the pump operating floor, and note any indication of movement.
of the pump units, and loose bolts.

(d) Inspect the discharge connections for signs of leakage at the couplings or vibration while the pump is operating. Check flap gates in the discharge lines, note any abnormal noise or sluggishness of movement in opening or closing.

(e) Inspect the pump driving shaft and couplings for alignment, and note any tendency for the shaft to vibrate, or any looseness in the couplings and connections. Worn shaft bearings will cause the shaft to vibrate, however, in some instances it may not be easily detected without the use of special instruments.

(f) Carefully inspect all metal work, and note any indications of rust, leakage when pump is operating, abnormal wear or other signs of deterioration.

(g) Insofar as practical, occasionally check the ability of the pump to deliver the required capacity and note any indication that the pump is in need of adjustment, suction lines restricted, or debris in the suction bell.

(2) Motor.

(a) Carefully inspect the motor to insure that it is being properly lubricated. Check especially the oiling system for proper functioning, as well as the piping from oil reservoir to the bearing in each instance. Note especially any leakage at the connections. Feel the bearing housings while the motor is operating and note any indication of abnormal heating at these points. Also note any unusual noise or vibration which would indicate that the bearings require attention and/or the unit is out of balance. Any clicking noise while the motor is running may be due to a cracked ball in the bearings, or some loose part and must be immediately corrected.
(b) Note any oil leaking by the oil seals, or any oil on the outside or inside of the motor housing.

(c) Check the motor for smoothness of operation under full load and note any abnormal noise or vibration of the assembly.

(d) Inspect the motor for signs of excessive temperature rise due to an apparent overload or other causes. This condition should be reflected in the switchboard ammeter.

(e) Check the functioning of the motor controls especially when starting up under load.

(f) Check the motor base anchor bolts to insure tightness also note any indication that the motor base has shifted on its support. While checking the motor base also inspect the coupling connection at the juncture of the motor pump drive shaft, and note any indication of wear, looseness or start of fracture.

(g) Check supply of spare parts if any on hand and note need for replenishment of supply.

(h) Carefully inspect all metal work and note rust spots and need for repainting or repair.

(i) Note collections of oil, dust or other material on or around the motor assembly which may constitute a possible fire hazard. In any event it should be removed.

(j) When initially starting a motor after it has been previously removed and reinstalled check for correct direction of rotation before applying full load.

c. Trash Racks.

(1) Occasionally check the metal work and note any rust spots, need for painting or other maintenance.

(2) Note the presence of debris including rags, weeds, etc., which may be clogging the openings through the vertical bars. Also note the presence of debris
in the collection sump, immediately upstream from the trash racks, which can be expected to move against the rack and which should be removed.

d. **Discharge Gates and Hoists.**

(1) **Slide Gates.**

(a) **Gates**

1. When accessible the gates should be carefully inspected to insure that all frame and guide anchorages are sufficiently tight, that the gate leaf has freedom of movement, and that gate opening and guides are not clogged with debris to limit or restrict the gate.

2. Inspect the condition of all metal work and other materials making up the assembly and note need for repair or replacement. Also inspect the gate seal bearing surfaces and note need for maintenance.

(b) **Hoist.**

1. Check the hoist and note any indication of binding, abnormally excessive hand force required to operate the hoist, and need for lubrication. Do not use motor to move hoist prior to this check.

2. Check condition of the hoist stem assembly including the guides and anchorage. Give particular attention to stem guide anchors and appurtenances. Note any indication of dirt, etc. on the hoist screw which may cause excessive manual effort to operate hand wheel.

3. Inspect all metal work including the hoist assembly, supporting structure, and associated appurtenance and note any need for maintenance.

4. Check condition of the gate well access cover, and note any indication of deterioration or hazard. (See Exhibit D sheet 6)
(2) **Flap Gates.**

(a) Inspect the metal work, wood work and seals making up the gate assembly and note need for maintenance.

(b) Note any improper functionings of the gate, including any indication of leakage when closed, limited or sluggish travel when operating as well as any debris which may be present to foul the movement of the flap in opening or closing. Check looseness of hinge anchor bolts and hinge pin wear. (See Exhibit D sheet 6)

e. **Staff Gages.**

(1) Inspect the gages to insure that all are in place and in good state of repair.

(2) Note need for painting or other maintenance.

f. **Pumping Plant Structure.**

At least once each year thoroughly inspect the entire structure and note need for painting or other maintenance required to restore to its original condition. Pay particular attention to junction of steel and concrete.

g. **Electrical System.**

(1) **Float Operated Controls.**

(a) Check the controls for proper functioning. Insofar as practical inspect the inside and outside of the float wells for any indication of debris which may interfere with the operation of the float including possible restriction of water inlets.

(b) Inspect all metal work for indications of rusting, objectionable accumulation of dust, etc.

(c) Insure that the operating mechanism is properly lubricated and sealed. At least twice a year remove the cover and inspect the mechanism located there for proper functioning, adequate lubrication and note any indications of water, dirt, etc. which may have accumulated.
(d) Insure that the base anchor bolts are secure and that float line is in true alignment with centerline of the float. Also note any indication of wear or other deterioration of the line assembly including connections at float and driving unit. Occasionally inspect the float for possible damage.

(e) Check electrical wiring and connections from controller unit. Inspect mercury contacts and check all terminals for tightness. Use a screwdriver.

(f) Transfer plugs shall be periodically transposed for manual alternation of pump programming to provide even wear on all pumping units during the operating season. Test plug provided shall also be operated to permit checking of floatswitch circuit continuity.

(2) Main Switch Board.

(a) The main switch board panel, switches, instruments, and appurtenances should be kept clean and free from dust. Doors of all cabinets should be kept closed, and locked.

Power supply should be "On" at all times and plant set for automatic operation unless an attendant is present at the plant since it is required that the sump water surface be held to less than elevation 42.0 during the summer time.

(b) Check the switches and controls to insure that they are mechanically and electrically operable. Note especially any indication of sluggish operation.

(c) Note any of the instruments such as meters and recorders which are not registering properly. Check the supply of recording charts on hand and note need for replenishment of the supply.

(d) Note especially any indication of loose connections, insulation deterioration, unusual odors or mechanical failure within or around the switch boards.
(e) Note any failure of the controls on the respective panels to control the operation of the units for which they are intended.

(f) Note the need for cleaning or other maintenance and insure that the access gate is properly locked at all times except during necessary inspection and maintenance periods.

(g) Check pilot lights for correct operation. Check Thermal overload resets. Check operation of gate interlock system. Check operation of float control system. Check operation of strip heaters.

(h) Circuit Breakers.

1. Air Type. The main points to be observed in the inspection of an air type circuit breaker are: condition of contacts, condition of arc-chutes, and whether the operating mechanism works freely yet is positive in closing, latching and tripping. The inspector should, while observing their condition, lubricate pins and bushings subject to wear, see that all others are in place, and that all bolts, nuts and set screws having to do with the breaker structure are set tight. Note also any evidence of heating, wipe off all the breaker bushings and check for cracked bushings.

2. Safety. Before approaching a circuit breaker for general inspection, sufficient precautions should be taken to guarantee the safety of the personnel and also prevent damage to the apparatus. The circuit breaker shall be de-energized by opening the breaker and also main disconnecting switch on the switch board. The control circuit and closing source of power should be cleared to prevent damage or injury from mechanical operation.

(i) Starters.

1. Yearly inspection of all motor starters should be made, preferably just prior to
starting of normal operating season, with partial inspection continuing at regular monthly intervals throughout the operating season.

2. Check all connections and note any that are not adequately secure.

3. Check to insure that all moving parts work sufficiently free and observe burnings on the contact tips. Also note if all contacts close or open at the same time.

4. Make note of any indication of mechanical and/or electrical failure at any point or other points requiring maintenance attention.

5. Note any indication of failure of sequence to close or open properly.

(j) Contactors.

1. Inspect the contactors for proper functioning. Note any indication of excessive heating and check to insure that they have correct travel, correct contact pressure, that the contact surfaces are clean, and that all connections are clean and tight.

2. Check to insure that all moving parts have adequate clearance to move and are not undesirably restricted by mechanical interference or friction.

3. Check the contact gap with the contactor fully open and note any need for adjustment or other attention.

(3) Miscellaneous.

(a) Note whether all light fixtures and controls are functioning properly and are clean. The flood light fixtures should be clean inside and out. Check the flood lights at night for proper adjustment.
(b) Inspect the circuit breakers and switches and note any indication that maintenance is required. Also check adequacy of the number of spare fuses on hand.

(c) Periodic inspections at least every year should be made of the entire electrical system provided for operation of the main pumping units.

(d) Reliance for power to operate the electrical facilities is placed on the Utility Company. Any conditions noted in the inspection that may effect in any way the reliability of the power supply should be especially noted and brought to the attention of the Utility Company in writing or other accepted practice without delay.

(e) Government furnished automatic water level recorder shall be checked and have charts changed as required. See Section VI.

h. Painting. At least once each year carefully inspect all painted surfaces and note need for repainting or other maintenance.

i. Hazards.

(1) Check to insure that the proper warning notices are legible and properly posted.

(2) Check all access manholes and note any covers not in place or in need of maintenance.

(3) Insure that the access to the plant deck across the access bridge is kept locked to exclude unauthorized persons.

(4) Note presence of any grease or oil accumulations on floor which may contribute to a fire or slipping hazard.

(5) Inspect the concrete structure for signs of abnormal cracks or other conditions requiring maintenance.

(6) Be certain no tools, rags, etc., are left on oil switches, circuit breakers, motors or any other electrical equipment before applying power.
j. **Sumps.**

(1) Sumps should be given visual inspection periodically for deposits of sediment that might tend to reduce the storage capacity. Any deposits should be removed. Design storage capacity must be maintained.

(2) The sump should be kept clean of debris, thistles, etc., that may be blown into the trash rack.

(3) The 48-inch CMP culvert that connects the two sumps should be kept clean of debris and sediment so that it functions properly for movement of water between the two sumps.

k. **Canals.**

(1) The feed canal from Lateral No. 5 should be kept clean and maintained to the gradient and cross section constructed to assure operation as designed.

(2) The discharge canal should be checked periodically to see that it is clear of debris that may impede functioning, particularly during flood periods.
5-03. Maintenance.

a. General. Since proper functioning of the pumping plant is vital to adequate operation of the drainage system, it is essential that all equipment, controls and appurtenances be continuously maintained in good operating condition. The subjects of maintenance and procedures can be only briefly touched upon herein and should be expanded and improved upon as continued experience is gained in operation of the equipment, and as new improved procedures are developed to expeditiously and efficiently handle the special problem which may arise. All damage or unserviceable parts shall be repaired or replaced, without delay. Before attempting major repair, the applicable contract plans, shop drawings, specifications, as well as catalogs, descriptive data and operating procedures supplied by the manufacturers of the equipment installed should be carefully reviewed. Certain specific points as pertains to the principal units are discussed below; however, full use shall be made of all pertinent technical data furnished with the respective units especially as pertains to repairing and adjusting the main pumping units. For special points requiring maintenance, refer to the periodic inspection reports. Use high grade lubricants which are suitable for the service and in all instances, in accordance with the equipment manufacturers' recommendations. Painting required should be performed in accordance with the original contract specifications. All necessary maintenance work shall be performed by skilled mechanics and electricians; where replacements are made the replacement parts shall be equal in quality to those originally installed or of suitable later improved design. For records required to be maintained and reports to be made see paragraph 5-04 of this manual. See also paragraph 208.10 (f) of the Federal Regulations, EXHIBIT A for further pertinent maintenance and test requirements. Exhibits F, G, and H of this manual will serve as guides and check lists for conducting the inspections and preparation of reports.

b. Drainage Pump-Motor Units.

(1) Pumps.

(a) If excessive vibration or noise occurs when the pump is operating the cause for which is not readily apparent, consult with an authorized representative of the pump manufacturer. It is absolutely necessary to determine whether mechanical or hydraulic conditions are causing the trouble in order to find a remedy for it. Persons untrained
in pump engineering and operation should not be engaged to "trouble shoot" insofar as concerns major problems relating to the pump unit itself. The plant operator, or responsible authorized person, should be instructed to immediately stop the pump the instant an unusual noise is discovered, rather than wait to consult with someone else; inasmuch as prompt action may avoid serious damage to the pump. A relative sudden development of abnormal noise or vibration may be due to numerous causes such as bearing failure, loose anchors, or debris sucked into the pump.

(b) When installing, adjusting and performing general maintenance make full use of the "Installation and Operating Instructions" prepared by the pump manufacturer for the pumps installed.

(c) The pumps are of relatively simple, rugged design and normally will require very little maintenance except for keeping the machinery clean and properly lubricated. High grade lubricants shall be used in each instance; however, it is undesirable to use more oil than the instructions call for. Careful and frequent inspections will in most instances reveal sources of possible trouble before they have had a chance to require a major repair operation to be performed.

(d) When it becomes necessary to pull or disassemble the pump unit to inspect, adjust and repair, all parts put back shall be thoroughly cleaned. At this time the bearings should also be carefully cleaned including removal of the old lubricant. The points required to be lubricated and methods provided are indicated on the approved shop drawings included herewith. Lubricating is the most important phase of pump maintenance and should be checked daily (during periods of pumping operations) but the lubricant should only be added as required. It is not enough merely to apply the lubricant at the points provided as it must also be assured that the lubricant is reaching the bearings in each instance.
(e) Note location of oil seals provided for the pump bearings to prevent leakage of lubricant from the bearings and also to prevent foreign matter from entering the bearings. Excessive lubricant consumption requires replacement of seals. Replace the seals with new when the pump is disassembled for servicing or more frequently if required.

(f) In tightening bolted connections use suitable size and proper type of wrench to avoid possible undesired overstressing of the threads and/or marring the heads of the bolts and nuts. When assembling the discharge line to the pump tighten the bolts, each a little at a time to pull the seals together evenly and exercise care to insure against the possibility of pulling the pump out of line or throwing an undesired strain on the pump unit. After completing the assembly of the pump to the discharge line carefully recheck the alignment of the pumping unit.

(g) It will be noted that the drainage pumps discharge into a concrete structure and a flap gate is installed at the end of each barrel of this structure to prevent feedback through the respective pump. These flap gates must be in proper operating condition at all times and any failure of this gate to operate properly shall be carefully investigated and the necessary maintenance performed without delay. Inspect those points noted on the inspection report and perform such maintenance as required. Give particular attention to the gate hinge bearing assembly and to the seals.

(h) The pumping pit is protected by a trash rack; however, it is possible that rags, etc., may work through which could wrap around and restrict the pump. Any debris noted within the enclosure which might clog or damage the pumps should be removed from the pumping compartment.

(i) Any rust spots noted during the inspection shall be carefully cleaned with a wire brush.
or other suitable means and repainted in accordance with the original specifications. Unpainted surfaces such as exposed shafting, etc., which have corroded shall be carefully cleaned and coated with water proof grease or suitable rust preventative.

This and similar maintenance not classed as an emergency should be performed once a year and during the non-operating period when most practical.

(2) **Main Pump Motors.**

(a) Carefully investigate all items noted on the inspection report and perform such maintenance as found to be required. Read "Manufacturers Instructions" carefully before installing or operating. Refer to "Motor Name Plate" for proper instruction identification. Assure that the motor bearings are being adequately but not excessively lubricated at the points provided in each instance and that the lubricant is reaching the bearings. Refer to the data provided on the name-plate of the motor in each instance as well as the applicable Manufacturers Instruction sheet. Lubrication pipes to the bearings must be kept tight. Supporting brackets provided for the lubrication pipes, sight indicators and appurtenances must be adequately secured to eliminate undesired vibration and noise. Note for signs of any oil leakage around the oil reservoir or oil piping and feel the bearings to determine whether or not there is any indication of the bearing becoming overheated and if so, shut down the unit.

(b) When installing the pump motors, insure that the base when installed is level and that the connecting coupling is tight. Then tightening the anchor bolts, tighten down the nuts gradually and uniform all around using a wrench of suitable size to permit adequate but not excessive tightening. Before installing shaft coupling, start motor and check to insure that the rotation is in the proper direction, as the pump unit must not be allowed to operate in reverse rotation.
(c) Should the motor pump unit be allowed to remain idle for any length of time, occasionally make a start and short running test to determine whether the unit, including the starter and control are in proper operating condition. Any major repairs or adjustments must be performed only by skilled mechanics and/or electricians thoroughly experienced with the type of equipment involved.

c. Trash Racks.

(1) The trash racks are provided to prevent debris from entering the pumping compartment that might otherwise tend to clog or damage the pumps. These racks should be kept free from debris.

(2) When corrosion of the metal work occurs it shall be thoroughly cleaned and painted.

d. Discharge Gates and Hoists. The gates and hoist equipment shall be carefully inspected and carefully maintained. Any indication of binding, misalignment, and/or abnormal force required to operate the hoisting equipment should be carefully investigated and the necessary maintenance performed.

(1) Slide Gates.

(a) Gate. When the gate is accessible all anchor bolts should be checked for tightness. When tightening any of the bolt nuts, use a wrench of suitable size to avoid overstressing the threads or pulling the frame and guides out of alignment. It is advisable to occasionally remove the gate leaf when conditions permit, and thoroughly clean off all metal or other parts of the assembly, replacing excessively worn or otherwise deteriorated parts. Apply a suitable coat of preservative material before reinstalling. Coat the sliding surfaces including the seal bearing surfaces with waterproof grease. Also coat the gate leaf stem assembly including guides with a heavy coat of waterproof grease.
(b) **Hoist**.

1. Perform such maintenance as found to be required during the inspection. Keep the hoist screw, gears, and hoist stem well lubricated with a suitable waterproof grease. Should abnormal force be required to operate the hoist, check hoisting screw and nut, and if found advisable, disassemble, thoroughly clean with a suitable cleaning solvent, lubricate and reassemble. If the parts are worn excessively replace the stem and nut with new parts.

2. The gate well access covers shall be adequately maintained at all times so as not to constitute a potential hazard. After maintenance and inspection operations are completed exercise special caution to insure that the covers are replaced and secured.

(2) **Flap Gates.** Repair damage disclosed by 5-02 d. (2) by replacement in kind.

(e) **Fire Protection.** Refer to applicable provisions of "Recommended Good Practices of the National Board of Fire Underwriters", and applicable safety manuals. If fire extinguishers are provided, insure that the proper type is being provided for the type of fire that might be expected in the particular area involved. Proper emphasis shall be directed to strictly enforce all fire prevention rules by frequent and careful inspections. No combustible materials shall be allowed to accumulate on or around the pumping plant. Any rags, paper, Etc. containing oil, paint or cleaning fluid shall not be allowed to accumulate - not even for a period of one day. Oil and grease dripping or other undesired accumulations shall be promptly removed. During any welding operations performed be especially careful to remove or properly isolate any material that might be so ignited or damaged by the welding procedure. Take prompt corrective action relative to any electrical equipment which shows signs of sparking. Approved fire prevention instructions and warnings shall be properly posted.

(f) **Staff Gages.** Maintain these installations clean and in a good state of repair. Any broken or damaged gages should
be replaced or repaired at the earliest practical date. Keep channel iron supports well painted in accordance with the original contract specifications.

g. **Pumping Plant Structure.**

(1) At least once each year thoroughly inspect the entire structure and perform any required maintenance to restore to its original condition.

h. **Electrical System.**

(1) **General.** Give particular attention to the items listed on the inspection report and perform such maintenance required in accordance with the best standard practice for the service with due consideration of all safety precautions. Only qualified mechanics and electricians experienced in the type of equipment involved shall be allowed to perform such maintenance. Maintenance of the power line is the responsibility of the Utility Company. A large percentage of electrical failures are due to mechanical failures. Generally, no simple device is available for locating the source of or analyzing the noise with the consequence that the action taken must depend primarily upon the judgment and experience of the maintenance personnel. When cleaning any part of electrical equipment use ample precautions to prevent explosions, fires or toxic conditions. Use only approved cleaners with relative low flash points.

(2) **Main Switch Boards.**

(a) Main Switch Boards, panel boards, switches, controllers, and appurtenances shall be kept clean and free from dust preferably by blowing with dry compressed air if available. Care should be taken to insure that the air does not contain moisture. Air should not be used for cleaning instruments. Air in excess of 30 lbs. should not be used on insulation or coils such as motors or solenoids. Doors of all cabinets shall be kept closed to exclude dust. Switches shall be kept mechanically and electrically operable at all times.
(b) Circuit Breakers. Periodically inspect, test, adjust and overhaul, if required, circuit breakers about once each year. Before attempting these or similar maintenance operations first insure that power is disconnected from the board; also consult the applicable catalogs and technical bulletins supplied by the manufacturer of the equipment for a detailed description of the unit and recommended procedures for operation and maintenance.

c) Starters.

1. Carefully investigate all points noted on the inspection reports as requiring attention. Before removing cover to inspect or to adjust, make sure that disconnecting switch is open and control circuit is de-energized.

2. Insure that all parts are clean and move freely.

3. Any excess deposits should be removed from the inside surfaces of the arc boxes adjacent to the contacts, and any broken arc boxes should be replaced.

d) Electrical Contacts.

1. Copper Contacts. If excessive heating is noticed during the inspection period, the most likely point of high resistance (and resultant heating) is where the movable tips make contacts with the stationary tips. If this condition is noticed, dress the contacts with a few strokes of a file. Since copper oxide has a very high resistance and forms on copper contacts rapidly at high temperature, a few strokes with a file will remove the oxide and reduce the resistance to a low value again. It should be pointed out, however, that contact tips which have been roughened by ordinary service do not have to be kept smoothed so that they will carry the load. A
A roughened tip will carry current just as well as a smooth tip; however, if large projects should appear on a tip because of unusual arcing, they should be removed. Contacts plated with a small layer of silver should be cleaned with a clean cloth or brush dipped in cleaning fluid. After being cleaned polish the contacts with a clean dry cloth. The brown discoloration that is found on silver and silver-plated contacts is silver oxide which is a good conductor. It should be left alone unless the contacts must be cleaned for some other reason. When corroded, contacts should be cleaned with No. 0000 sandpaper. This must be done very carefully so as not to remove too much of the silver plating. After the corrosion has been removed polish the contacts with a clean, dry cloth making certain that all abrasive particles are removed and that the shape of the contact has not been changed. Silver-plated contacts that are badly burned or pitted should be replaced. In the event no replacement is on hand at the site, the contacts may be dressed with sandpaper until the burned or pitted spots are removed. If the burns or pits can not be removed by using sandpaper, then use a burnishing tool very carefully. In only extreme emergencies will the use of a file on silver-plated contacts be permitted. In no instance shall highly abrasive materials, such as emery cloth, heavy sandpaper or carborundum paper be used for surfacing relay contacts. In adjusting the contact pressure refer to the manufacturer's recommendations and check by the spring balance or other approved methods. In case the contact pressure is below the minimum value required, adjust or install a new spring. Low pressure should be avoided to minimize possibility of excessive heating of the contacts. On multiple pole devices, the spring tension on all poles should be approximately the same as if one is considerably lower than the others, the spring should be replaced.
2. Avoid the use of lubricant on contacts or bearings of a contactor as oil quickly collects dust and unless parts are frequently cleaned, will interfere with the operation of the contactor.

3. Maintain the contact gap in accordance with the Manufacturer's instructions.

4. Failure to close may be due to one of the following:
 a. Operating coil may be open-circuited.
 b. Lead wires to operating coil may be loose or disconnected.
 c. Excessive mechanical friction.
 d. Power off or voltage below normal.

5. Failure to open may be due to one of the following:
 a. Mechanical interference or friction.
 b. "Welded contacts.
 c. Broken contact spring.

(e) All wiring connections in the rear of the switchboards shall be inspected yearly before the pumping season in order to insure that there are no loose contacts and that proper clearances are maintained. All parts of the panel board should be kept clean. Branch circuit breakers which are not normally required to be closed shall be kept in the "OFF" position. The bus voltage should be checked periodically for phase balance and especially after utility service has been restored following an outage.

3) Miscellaneous.

(a) Lighting. The lighting circuits shall be maintained in operable condition at all times. Lamps which have burned out shall be replaced without delay. The lighting fixture shall be cleaned at least once a year, removing all dust and insects. Keep an adequate supply of fuses and light bulbs on hand at all times.
(b) Maintain all other electrical equipment clean, adequately lubricated and in proper operating condition at all times in accordance with best practice for the service, with particular attention to those items noted on the inspection report.

(4) **Cleaning Electrical Equipment.**

(a) **Compressed Air.** Air pressure used for cleaning electrical equipment should not exceed 30 psi. When using compressed air certain precautions should be exercised as set forth in (2) above.

(b) **Vacuum.** This method of cleaning is especially applicable in removing copper dust and other waste materials.

(c) **Solvent.** If dry cloth or compressed air is not sufficient to remove gummed dirt or grease from electrical apparatus, use carbon tetrachloride as a solvent for cleaning. Moisten the cloth sparingly with carbon tetrachloride and wipe off the dirt from the parts to be cleaned. Be sure to have adequate ventilating and avoid inhaling the fumes. Never use gasoline, benzene or benzol for cleaning as these solvents are highly inflammable; their vapors are explosive, and may be corrosive or will dissolve certain types of insulation.

5-04. **Records.**

a. Procedures for inspection, maintenance, and testing of the pumping plant equipment and appurtenances shall include the requirements set forth in paragraph 208.10 (f) of the Federal Regulations, EXHIBIT A of this manual. Inspection Check List, EXHIBIT F, Lubrication Schedule, EXHIBIT G and other descriptive material contained in Section III of this manual will serve as a guide in meeting these requirements, and in the maintenance of required records and logs.

b. Maintenance card or cards should be kept for each major piece of equipment for recording a summary of, test results, inspection and repairs, and any pertinent comments regarding the condition of the equipment. Such cards should be kept up to date and filed at an approved location so as to be readily available.
to those responsible for inspection, testing and maintenance. A data card should be prepared for each piece of equipment or component thereof consistent with the maintenance program breakdown to provide a record of project equipment. The data card records should indicate all name plate data and other historic information that would indicate, at least, but not necessarily be limited to, source of manufacture, physical characteristics, date of purchase, cost of procurement and list of spare parts available.

c. A copy of the inspection and maintenance records shall be filed with the State Department of Water Resources.

d. Flood Period Log. A record or log of pumping plant operations shall be kept during flood operating period, a copy of which is to be furnished the District Engineer in the semi-annual report, all in conformance with applicable requirements of paragraph 208.10 (f), EXHIBIT A of this manual. An Operation Log, form EXHIBIT H has been prepared as a general guide in satisfying above requirements, but may be modified and expanded as required to adapt it to the particular operating period observed, and special conditions which may arise.
SECTION VI

O&M MANUAL FOR SAN JOAQUIN RIVER PUMPING PLANT

6-01. Description of Hydrologic Facilities. The hydrologic facilities for the project consists of a gaging station to record simultaneous water levels in the sump and in the river at the pumping plant outlet. The components of this station are:

a. Two electrically driven Stevens A-35 water stage recorders located in the house on the pump platform.

b. Two 18-inch stilling wells suspended from the pump platform, one 18-inch CVP connected by a short inlet pipe to the sump and one 18-inch welded steel pipe is connected by a 190-foot long 3-inch diameter pipe through the levee to San Joaquin River.

c. A sump staff gage fastened to a pile supporting the pump platform, and several sections of staff gage on the river side fastened either to the outlet conduit or to angle irons with concrete footings. All are set to mean sea level datum.

6-02. Operation and Maintenance of Hydrologic Facilities. The several components of the gaging station shall be operated and maintained as follows:

a. The water stage recorders shall be operated continuously and charts filed for permanent retention by the California State Department of Water Resources.

b. Water stage recorders shall be serviced by qualified personnel at regular intervals in accordance with the manufacturer's "Instructions for Installing and Operating" furnished with instruments.

c. Staff gages shall be inspected annually to assure their serviceability. Gage sections should be cleaned, secured, or damaged sections replaced as necessary.

d. The stilling wells and inlet pipes shall be inspected annually and damage thereto repaired. The 190 foot inlet pipe for the river-side well shall be flushed annually, or more frequently if required, to keep it functioning.
6-03. Semi-Annual Stage Reports

The operator shall furnish a tabulation of the maximum stages for each month recorded by each water stage recorder since the last semi-annual report and also the maximum discharge obtained from stage data and design rating curve during that period. This tabulation shall be furnished the District Engineer as part of the requirements of 3-05 (6) of this manual.
EXHIBIT A

FEDERAL FLOOD CONTROL REGULATIONS

PLATE 1
LOCATION MAP AND DRAINAGE LAYOUT

PLATE 2
SWAMP CAPACITY CURVE

PLATE 3
STAGE-TIME-FLOW CURVES

PLATE 4
PUMP CHARACTERISTICS

PLATE 5
PUMP DISCHARGE

PLATE 6
RATING CURVE FOR GRAVITY FLOW
TITLE 33—NAVIGATION AND NAVIGABLE WATERS
Chapter II—Corps of Engineers, War Department
PART 209—FLOOD CONTROL REGULATIONS
MAINTENANCE AND OPERATION OF FLOOD CONTROL WORKS

Pursuant to the provisions of section 8 of the Act of Congress approved June 22, 1938 (49 Stat. 1871; 50 Stat. 871; and 58 Stat. 626; 53 U. S. C. 701e; 701o–4), the following regulations are hereby prescribed to govern the maintenance and operation of flood control works:

§ 209.10 Local flood protection works; maintenance and operation of structures and facilities—(a) General. (1) The structures and facilities constructed by the United States for local flood protection shall be continuously maintained in such a manner and operated at such times and for such periods as may be necessary to obtain the maximum benefits thereof.

(2) The State, political subdivision thereof, or other responsible local agency, which furnished assurance that it is capable and willing to operate and maintain the flood control works in accordance with regulations prescribed by the Secretary of War, as required by law, shall appoint a permanent flood control committee to prepare and circulate to all officers of said committee or to his successor in office, if appointed by an official hereinafter called the "Superintendent," who shall be responsible for the development and maintenance of, and supervision in charge of, an organization responsible for the efficient operation and maintenance of all of the structures and facilities during flood periods and for constant inspection and maintenance of the project works during periods of low water, all without cost to the United States.

(3) A reserve supply of materials needed during a flood emergency shall be kept on hand at all times.

(b) No encroachment or trespass which will adversely affect the efficient operation or maintenance of the project works shall be permitted upon the rights-of-way for the protective facilities.

(2) No improvement shall be passed over, under, or through the walls, levees, embankments, levee groins, or other flood levees, and shall not excavation or construction be permitted within the limits of the project rights-of-way, nor shall any change be made in any feature of the works without prior determination by the District Engineer or his authorized representative that such improvement, excavation, construction, or alteration will not adversely affect the functioning of the protective facilities or improvements or operations as may be found to be desirable and permissible under the above determination shall be constructed in accordance with standard engineering practice. Advice regarding the effect of proposed improvements or alterations on the functioning of the project and information on methods of construction acceptable under standard engineering practices shall be obtained from the United States Army Corps of Engineers or, if such information or advice is not obtained, shall be submitted for his approval. Drawings or prints showing such improvements or alterations as shall be obtained or, if information or advice is not obtained, shall be submitted for his approval. Drawings or prints showing such improvements or alterations shall be submitted for his approval.

(c) It shall be the duty of the superintendent to submit a semiannual report to the District Engineer on the condition, maintenance, and operation of the protective works.

(1) The District Engineer by his authorized representative shall after completion of the work be immediately prior to the beginning of the flood season; immediately following each major high water period, and otherwise at intervals not exceeding 90 days, and such intermediate times as may be necessary to insure the best possible care of the levees. Immediate steps will be taken to correct dangerous conditions disclosed by such inspection. Adequate repair measures shall be accomplished during the proper season as scheduled by the Superintendent.

(2) In case the work of the levees the levees shall be patrolled continuously to locate possible sand boils or unusual weakness of the landward slope and to be certain that:

(i) There are no indications of slides or sloughs developing;

(ii) Wave wash or scouring action is not occurring;

(iii) No local channels exist which might endanger the structure.

Appropriate advance measures will be taken to assure the availability of adequate labor and materials to meet all contingencies. Immediate steps will be taken to control any condition which endangers the levee or repair the damaged section.

(3) Flood walls.—(1) Maintenance. Periodic inspections shall be made by the Superintendent to determine that:

(i) No seepage, saturated areas, or sand boils are occurring;

(ii) No undue settlement has occurred which would affect the stability of the wall or its water tightness;

(iii) No tress exist, the roots of which might extend under the wall and offer negative resistance in case of high water;

(iv) The concrete has not undergone cracking, chipping, or breaking to an extent which might affect the stability of the wall or its water tightness;

(v) There are no encroachments upon the right-of-way which might endanger the structure or hinder its functioning in time of flood;

(vi) Care is being exercised to prevent accumulation of trash and debris adjacent to walls, and to insure that no fires are being built near them;

(vii) No bank covering conditions exist riverward of the wall which might endanger its stability;

(viii) Top drainage systems and pressure relief walls are in good working condition, and that such facilities are not becoming clogged or plugged.

Such inspections shall be made immediately prior to the beginning of the flood season, immediately following each major high water period, and at intervals not exceeding 90 days. Measures to eliminate encroachments and effects of repairs found necessary by such inspections shall be undertaken immediately. All repairs shall be accomplished by methods acceptable in standard engineering practice.

(3) Operation. Continuous patrol of the wall shall be maintained during flood periods to locate and correct any possible weak areas, including joints or seepage beneath the wall. Floating plant or boats will not be allowed to lie against or tie up to the wall. Should it be necessary during a flood emergency to pass sand or cables across the wall, adequate means are to be taken to protect the concrete and construction joints. Immediate steps shall be taken to correct any condition which endangers the stability of the wall.

(4) Drainage structures.—(1) Maintenance. Adequate measures shall be taken to insure that inlet and outlet channels are kept open and that trash, drift, or debris is not allowed to build up in the near drainage structures. Flap gates and manually operated gates and valves on

EXHIBIT "A" Sheet 1 of 2 03-17778-01
In the Operation and Maintenance Manual which will be furnished local interests upon completion, drainage structures will be inspected frequently during flood periods to ascertain that no undue leakage is occurring and that drains protective levee embankments are functioning properly. Decks or floating plant shall not be allowed to tie up to closure structures or to discharge passengers therefrom.

1) Pumping plants—(1) Maintenance. Pumping plants shall be inspected by the Superintendent at intervals not to exceed 30 days and 90 days during off-flood seasons to insure that all equipment is in order for instant use. At regular intervals, proper measures shall be taken to provide for cleaning plant, buildings, and equipment, repainting as necessary, and lubricating all machinery. Adequate supplies of lubricants for different types of machinery, fuels for gasoline or diesel powered equipment, and flash lights or lanterns for emergency lighting shall be provided and at all times. Telephone service shall be maintained at pumping plants. All equipment, including switch gear, transformers, motors, and gear shall be trial operated and checked at least once every 90 days. Measured tests of all insulation shall be made whenever change of temperature or dampness and otherwise at intervals not to exceed one year. Records shall be kept showing the results of such tests. Water shall be kept to an unsatisfactory condition by such tests shall be brought to a satisfactory condition or shall be promptly repaired. Gasoline engines shall be started at such intervals and allowed to run for such length of time as may be necessary to insure their safe condition at the time of emergency. Only skilled mechanics and mechanics shall be employed on tests and repairs. Operating personnel for the plant shall be prepared for all tests. Any equipment removed from the station for repair or replacement shall be returned or replaced when available and shall be trial operated after reinstallation. Repairs requiring removal of equipment from the plant shall be made during off-flood seasons insofar as practicable.

(2) Operation. Competent operators shall be on duty at all pumping plants whenever it appears likely that pump operation is imminent. The operator shall thoroughly inspect, trial, operate, and place in readiness all plant equipment. The operator shall be familiar with the equipment manufacturers' instructions and drawings and with the "Operating Instructions" for each station. The equipment shall be operated in accordance with the above-mentioned "Operating Instructions". All electric circuit breakers shall be exercised that proper lubrication is being supplied all equipment, and that no overheating, undue vibration or noise is occurring. Immediately upon final rise of flood waters, the pumping station shall be thoroughly cleaned, pump house and all such equipment thoroughly inspected, oiled and greased. A record or log of pumping plant operation shall be kept for each station, a copy of which shall be submitted to the District Engineer following each flood.

2) Channels and floodways—(1) Maintenance. Periodic inspections of improved channels and embankments shall be made by the Superintendent to be certain that:

(a) The channel or floodway is clear of debris, weeds, and wild growth;

(b) The capacity of the channel or floodway is not being reduced by the depositing of water or debris or by the formation of obstacles or other encroachments;

(c) The banks of the channel or floodway is not being reduced by the forming of obstructions or debris to permit proper functioning of the project works.

Such inspections shall be made prior to the beginning of the flood seasons and other life at intervals not to exceed 90 days. Immediate steps shall be taken to remedy any adverse conditions disclosed by such inspections. Measures will be taken by the Superintendent to promote the growth of grass on bank slopes and earth deflection dikes. The Superintendent shall provide for the repair and cleaning of debris basins, check dams, and related structures as may be necessary.

(2) Operation. Both banks of the channel shall be patrolled during periods of high water, and measures shall be taken to remove debris or other objects which are likely to be carried by the current or by wave wash. Appropriate measures shall be taken to prevent the formation of jams of ice or debris. Large objects which become lodged against the bank shall be removed. The improved channel or floodway shall be thoroughly inspected and cleaned during the spring following each major high water period. As soon as practicable thereafter, all snags and other debris shall be removed and replacement or replaced embankments and deflection dikes and walls, drainage outlets, or other flood control structures repaired.

(3) Miscellaneous facilities—(1) Maintenance. Miscellaneous structures and facilities constructed as a part of the protective works and the nature and facilities which function as a part of, or affect the efficient functioning of the protective works, shall be periodically inspected and shall be maintained in good repair by the Superintendent, or as necessary to maintain. The Superintendent shall be familiar with the equipment manufacturers' instructions and drawings and with the "Operating Instructions" for each station. The equipment shall be operated in accordance with the above-mentioned "Operating Instructions". All electric circuit breakers shall be exercised that proper lubrication is being supplied all equipment, and that no overheating, undue vibration, or noise is occurring. Immediately upon final rise of flood waters, the pumping station shall be thoroughly cleaned, pump house and all such equipment thoroughly inspected, oiled and greased. A record or log of pumping plant operation shall be kept for each station, a copy of which shall be submitted to the District Engineer following each flood.

(2) Operation. Miscellaneous facilities shall be operated to prevent or reduce flooding during periods of high water. Those facilities constructed as a part of the protective works shall not be used for purposes other than flood protection without approval of the District Engineer. The Los Angeles County Flood Control District is hereby declared to be a public project of the State of California and all machinery, plants, structures, and other facilities which function as a part of, or affect the efficient functioning of the protective works, shall be periodically inspected and shall be maintained in good repair by the Superintendent or as necessary to maintain. The Superintendent shall be familiar with the equipment manufacturers' instructions and drawings and with the "Operating Instructions" for each station. The equipment shall be operated in accordance with the above-mentioned "Operating Instructions". All electric circuit breakers shall be exercised that proper lubrication is being supplied all equipment, and that no overheating, undue vibration, or noise is occurring. Immediately upon final rise of flood waters, the pumping station shall be thoroughly cleaned, pump house and all such equipment thoroughly inspected, oiled and greased. A record or log of pumping plant operation shall be kept for each station, a copy of which shall be submitted to the District Engineer following each flood.

(3) Operation. Miscellaneous facilities shall be operated to prevent or reduce flooding during periods of high water. Those facilities constructed as a part of the protective works shall not be used for purposes other than flood protection without approval of the District Engineer. The Los Angeles County Flood Control District is hereby declared to be a public project of the State of California and all machinery, plants, structures, and other facilities which function as a part of, or affect the efficient functioning of the protective works, shall be periodically inspected and shall be maintained in good repair by the Superintendent or as necessary to maintain. The Superintendent shall be familiar with the equipment manufacturers' instructions and drawings and with the "Operating Instructions" for each station. The equipment shall be operated in accordance with the above-mentioned "Operating Instructions". All electric circuit breakers shall be exercised that proper lubrication is being supplied all equipment, and that no overheating, undue vibration, or noise is occurring. Immediately upon final rise of flood waters, the pumping station shall be thoroughly cleaned, pump house and all such equipment thoroughly inspected, oiled and greased. A record or log of pumping plant operation shall be kept for each station, a copy of which shall be submitted to the District Engineer following each flood.

J. A. Ullo, Major General, The Adjutant General, [P. R. Doc. 61-1285; filed, August 14, 1944; 8:44 a.m.]

EXHIBIT "A" Sheet 2 of 2
PUMP CHARACTERISTICS

SAN JOAQUIN RIVER PUMPING PLANT
(FROM MODEL TEST DATA)

GEORGE E. GOODALL CO.
JUNE 1961
DISCHARGE RATING FOR ALL 3 BARRELS,
GRAVITY FLOW WHEN BACKWATER COVERS OUTLET

\[Q = 180 R^{0.69} \]

WHERE FREE FLOW AT DISCHARGE END EXISTS

FOLLOWING TABULATION SHOULD BE USED

<table>
<thead>
<tr>
<th>SUMP WATER SURFACE ELEVATION</th>
<th>Q in c.f.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.2</td>
<td>0</td>
</tr>
<tr>
<td>39.4</td>
<td>1</td>
</tr>
<tr>
<td>39.6</td>
<td>4</td>
</tr>
<tr>
<td>39.8</td>
<td>6</td>
</tr>
<tr>
<td>40.0</td>
<td>8</td>
</tr>
<tr>
<td>40.5</td>
<td>14</td>
</tr>
<tr>
<td>41.0</td>
<td>22</td>
</tr>
<tr>
<td>41.5</td>
<td>32</td>
</tr>
<tr>
<td>42.0</td>
<td>46</td>
</tr>
<tr>
<td>42.5</td>
<td>64</td>
</tr>
<tr>
<td>43.0</td>
<td>91</td>
</tr>
<tr>
<td>43.5</td>
<td>156</td>
</tr>
<tr>
<td>43.7</td>
<td>216</td>
</tr>
</tbody>
</table>
EXHIBIT B

"As Constructed"

DRAWINGS

(See Separate Folder for the Following Drawings)

(Drws. No. CC-7-25-1622)

Pumping Plant for Interior Drainage

<table>
<thead>
<tr>
<th>File No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1622/1.2</td>
<td>General Plan and Vicinity Map</td>
</tr>
<tr>
<td>1622/2</td>
<td>Site Plan and Cross Sections</td>
</tr>
<tr>
<td>1622/3</td>
<td>Soil Borings and Miscellaneous Sections</td>
</tr>
<tr>
<td>1622/4.1</td>
<td>Pumping Plant Plan and Sections</td>
</tr>
<tr>
<td>1622/5.2</td>
<td>Pumping Plant Sections and Details</td>
</tr>
<tr>
<td>1622/6.1</td>
<td>Trash Rack and Float Wells</td>
</tr>
<tr>
<td>1622/7.2</td>
<td>Electrical Plot Plan</td>
</tr>
<tr>
<td>1622/8.2</td>
<td>Electrical Switch Gear and Wiring Diagrams</td>
</tr>
</tbody>
</table>

SPECIFICATIONS

(See Separate Folder)

2663

PUMPING PLANT, Right bank San Joaquin River between Merced River and Tuolumne River
EXHIBIT C

MANUFACTURER'S DATA
(See following Manufacturer's Data under separate cover)

1. **PUMPS**

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Manufacturer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMS 167B</td>
<td>Cascade Pump Co.</td>
<td>Installation and operation instructions and parts list - pumps model test data</td>
</tr>
<tr>
<td>2M6166</td>
<td></td>
<td>Pump Assembly.</td>
</tr>
<tr>
<td>LM 6025</td>
<td></td>
<td>Oil Supply Tank.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test Laboratory Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Test Report</td>
</tr>
</tbody>
</table>

2. **MOTOR**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Manufacturer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11043-1</td>
<td>The Louis Allis Co.</td>
<td>Motor Test Record</td>
</tr>
<tr>
<td>11043-2</td>
<td></td>
<td>Speed Torque Curve</td>
</tr>
<tr>
<td>11043-3</td>
<td></td>
<td>Performance Curves</td>
</tr>
<tr>
<td>11043-4</td>
<td></td>
<td>Excitation Curves</td>
</tr>
<tr>
<td>11043-5</td>
<td></td>
<td>Impedence Curves</td>
</tr>
<tr>
<td>11043-6</td>
<td></td>
<td>Temperature Curves</td>
</tr>
<tr>
<td>S-2392</td>
<td></td>
<td>Motor Dimension Data</td>
</tr>
<tr>
<td>10818-1</td>
<td></td>
<td>Performance Curve</td>
</tr>
<tr>
<td>10818-2</td>
<td></td>
<td>Torque and Current Curve</td>
</tr>
<tr>
<td>2450</td>
<td></td>
<td>Motor Bulletin</td>
</tr>
<tr>
<td>LM-1-2</td>
<td></td>
<td>Insulation Data</td>
</tr>
<tr>
<td>R-972</td>
<td></td>
<td>Paint Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor Details</td>
</tr>
</tbody>
</table>

3. **CONTROLS**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Manufacturer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>145515A</td>
<td>General Controls</td>
<td>Slide Gate Details</td>
</tr>
<tr>
<td>145563A</td>
<td></td>
<td>Wiring Diagram</td>
</tr>
<tr>
<td>145565A</td>
<td></td>
<td>Gate Operator Details</td>
</tr>
<tr>
<td>145574E</td>
<td></td>
<td>Wiring Diagram</td>
</tr>
<tr>
<td>SDI-T-M-1</td>
<td></td>
<td>Torque-Master Instructions</td>
</tr>
<tr>
<td>SDI-T-M-2</td>
<td></td>
<td>Torque-Master Instructions</td>
</tr>
<tr>
<td>SDI-T-M-3</td>
<td></td>
<td>Switch Adjustment</td>
</tr>
<tr>
<td>SDP-TM-1</td>
<td></td>
<td>Lubrication Instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parts Data</td>
</tr>
</tbody>
</table>

4. **OTHER DATA**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Manufacturer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-7269</td>
<td>Armco</td>
<td>Slide Gate Details</td>
</tr>
<tr>
<td>AV-1-038</td>
<td></td>
<td>Gate Stem Splice</td>
</tr>
<tr>
<td>AV-1-040</td>
<td></td>
<td>Gate Stem Guide</td>
</tr>
</tbody>
</table>
EXHIBIT D

Photographs of Pumping Plant
WEST END OF TURLOCK IRRIGATION DISTRICT LATERAL NO. 5. AT LEFT IS HEADWALL FOR DRAINAGE STRUCTURE THRU RIGHT BANK LEVEE OF SAN JOAQUIN RIVER. IN CENTER BACKGROUND IS CHANNEL PARALLEL TO LEVEE THRU WHICH WATER FLOWS TO PUMPING PLANT SUMP WHEN WATER SURFACE IN LATERAL NO. 5 EXCEEDS 42.5 OR WHENEVER FLOW THRU LEVEE IS PREVENTED.

PUMPING PLANT SUMP SHOWING CHANNEL FROM LATERAL NO. 5 AT RIGHT. THE THREE WIRES ARE THE MAIN SERVICE FROM POLE MOUNTED TRANSFORMER BANK AT RIGHT TO PUMPING PLANT AT LEFT.
PUMPING PLANT AND ACCESS BRIDGE SHOWING DECK MOUNTED MOTORS, TRASH RACK AND LIGHTING. GAGE HOUSE IS VISIBLE BUT WEATHER-PROOF SWITCHBOARD IS OBSCURED BY PUMPS.

PUMPING PLANT AND ACCESS BRIDGE SHOWING BACK OF WEATHERPROOF SWITCHBOARD ON WHICH IS MOUNTED MAIN SERVICE MAST AND SERVICE DROP ANCHORAGE.
POLE MOUNTED TRANSFORMER BANK

TRASH RACK AND PUMP DISCHARGE LINES (Sump Staff Gage is mounted on column to right and can be read from bridge)
SIDE VIEW OF PUMPING PLANT SHOWING BEHIND TRASH RACK AND UNDER GAGE HOUSE THE STILLING WELLS FOR RIVER STAGE, FOR SUMP STAGE AND FOR CONTROL FLOATS.

COMPOSITE PHOTO OF PUMP CONTROL; SUMP AND RIVER STAGE RECORDERS.

EXHIBIT D Sheet 4 of 7
PANELBOARD FOR CONTROL OF LIGHTS, CONTROL AND HEATER CIRCUITS.

GATE HOIST PANELBOARD, EACH PUMP HAS AN INDIVIDUAL PANELBOARD SIMILARLY STYLED.
HOISTS FOR SLIDE GATES. GATE WELL ACCESS IS FROM LADDER UNDER THE THREE GRAY AREAS ON STRUCTURE DECK.

AUTOMATIC DRAINAGE GATES IN FULLY CLOSED POSITION.
AUTOMATIC DRAINAGE GATES UNDER PARTIAL FLOW CONDITION WITH GRAVITY FLOW OCCURRING FROM SUMP THRU PUMPS.

AUTOMATIC DRAINAGE GATES UNDER FULL FLOW CONDITION WITH ALL THREE PUMPS OPERATING AND LOW RIVER STAGE.
EXHIBIT E
Letter of Acceptance by the State Reclamation Board
The Reclamation Board
State of California
1215 "O" Street
Sacramento 14, California

Gentlemen:

Reference is made to the joint inspection made on 23 February 1961
of a pumping plant pertaining to the Lower San Joaquin River and Tributaries Project for the purpose of transferring it to the State of California for operation and maintenance.

The required work, referred to above, consisting of a pumping plant and allied facilities located on the right bank of the San Joaquin River at river mile 101.50, was completed on 17 February 1961 in accordance with Specification No. 2553, Contract No. DA-04-167-CIVENG-60-96 and Drawing No. 7-25-1622.

The above described flood control work now meets the requirements of the Lower San Joaquin River and Tributaries Project. Therefore said improvements are transferred to the State of California for operation and maintenance.

The maintenance work required under the provisions of the Lower San Joaquin River and Tributaries Project shall be performed in accordance with existing Flood Control Regulations, inclosed herewith, which have been prescribed by the Secretary of the Army pursuant to Section 3 of the Act of Congress, approved 22 June 1936, as amended and supplemented by a Standard Operation and Maintenance Manual for the Lower San Joaquin River and Tributaries Project which is being prepared. As provided under Paragraph 205.10(10) of these regulations, an Operation and Maintenance Manual covering the work under this portion of the Lower San Joaquin River and Tributaries Project is in process of preparation and will be furnished to you upon completion.

Unit 602
A copy of this letter is being transmitted to the Department of Water Resources.

Sincerely yours,

E. H. Turner
Colonel, CE
District Engineer

1. Inc1.
 F.C. Reg.

Copy furnished:
Dept Water Resources
23rd & "F" Streets
Sacramento, Calif.
O.C.E.
S.F.D.

cc: Engr Divn, Levees & Channel Sec w/o incl
Engr Divn, Program Dev Branch w/o incl
Engr Divn, Mech & Elec Sec w/o incl
Northern Area Office w/o incl
Operations Branch w/o incl
District Engineer
Sacramento District
U. S. Corps of Engineers
P. O. Box 1739
Sacramento 8, California

Dear Sir:

Reference is made to your letter of March 2, 1961, File SPKKC-C, regarding transfer to the State of California of a pumping plant on the Lower San Joaquin River and Tributaries Project at river mile 101.50, Specification No. 2663.

The Reclamation Board at its meeting of March 16, 1961, formally accepted this pumping plant for operation and maintenance.

Sincerely yours,

A. N. MURRAY
General Manager and Chief Engineer

EXHIBIT E
EXHIBIT F

Mechanical-Electric Equipment

Inspection Check List
EXHIBIT F
Mechanical-Electrical Equipment

Inspection Check List

PROJECT: Lower San Joaquin River Pumping Plant for Interior Drainage

INSPECTOR: _________________________ DATE: _________________________

ITEM: _____________________________ **PERIOD EVERY REMARKS DATE, MAINT., & INITIAL

1. Drainage Pumps-Motor Units

 a. Pumps

 (1) Lubrication
 Adequacy
 Functioning of oiling system.
 Condition of lubrication lines fittings, pipe, anchors, etc.
 Adequacy of supply of lubricant on hand

 (2) Functioning of Pump
 Smoothness of operation unusual vibration and/or noise. Each 8 hours*
 Pump RPM 6 months
 Capacity 6 months
 Drive shaft vibration when running day**
 Bearing wear year

* During periods of pumping operations.
** See Paragraph 5-04 of this manual and note 4 of EXHIBIT F, sheet 8
<table>
<thead>
<tr>
<th>ITEM</th>
<th>PERIOD</th>
<th>REMARKS</th>
<th>DATE, MAINT., & INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) Adjustment.</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Adjustment (see Pump Manual)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Condition of Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive shaft</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive shaft connections/year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease packing rings</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Pump anchorage</td>
<td>week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Debris in pumping pit around pump suction, etc.</td>
<td>day*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Discharge line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe couplings</td>
<td>month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flap gate</td>
<td>month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Condition of metal work/6 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Pump Motor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Lubrication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequacy</td>
<td>day*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing temp. noise vibration etc.</td>
<td>day*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functioning of bearing feed oiler, & oil level/day*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant piping, fittings, reservoir, etc./day*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note signs of oil leakage at any point day*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* During periods of pumping operations.
ITEM | PERIOD | REMARKS | DATE, MAINT.
--- | --- | --- | ---
(2) **Motor Operation** | EVERY | & INITIAL | ~
Note any indication of excessive temperature rise under load day
Abnormal vibration and/or noise day
Check function of motor controls day
Note any failure of motors to pull in throughout the load range day
Inspect for moisture inside the motor housing/month
Motor base anchorage month

(3) **Drive shaft & coupling**
Inspect for functioning and condition month

(4) **Note accumulations of oil on or around the motor** day

(5) **Metal Work**
Note rust spots wear and condition of paints 6 months

(6) **Spare Parts**
Adequacy of supply 3 months

2. **Electrical System.**

a. **Main Switch Board**

(1) Inspect all equipment and note need for cleaning/week

During periods of pumping operations
ITEM

PERIOD
EVERY

REMARKS

DATE, MAINT., & INITIAL

(2) Check switches and controls to insure that they are mechanically operable/ month

(Note indications of sluggish operation or sparking)

(3) Note any instruments such as motors, recorders, etc., which are not registering properly day*

(4) Check supply of recording charts and need for changing chart week

(5) Inspect for indications of: day*

Loose connections.
Insulation deterioration.
Unusual odors.
Mechanical failures.

(6) Report any failure of the controls to control the operation of the units for which they are intended day*

(7) Inspect relays, etc., making full use of manufacturers descriptive data year

(8) Circuit Breakers

Condition of oil.
Condition of contacts.
Functioning of the operating mechanism.
Lubrication of pins and bushings.

* During periods of pumping operations

EXHIBIT F
Sheet 4 of 8
<table>
<thead>
<tr>
<th>ITEM</th>
<th>PERIOD</th>
<th>REMARKS</th>
<th>DATE, MAINT. & INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EVERY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tightness of bolts, nuts, cotters, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of heating.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition of bushings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Starters</td>
<td>month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check all connections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check to insure that all moving parts move freely.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check adjustment and condition of contact tips.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check functioning of start and stop buttons and overload relay.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) Contactors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check for proper functioning, including opening and closing operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect contacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check adjustment of contact gap.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check contact pressure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Lighting System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check light fixtures and controls for proper functioning.</td>
<td>week</td>
<td>EXHIBIT F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheet 5 of 8</td>
<td></td>
</tr>
</tbody>
</table>
ITEM | PERIOD | REMARKS | DATE, MAINT. | INITIAL
---|---|---|---|---
Check adjustment of flood light. | month | | |
Inspect circuit breakers/ month | | | |
Check supply of fuses and light bulbs on hand | month | | |
(2) Pump Motor Controls | | | |
Check the entire electric system provided for operating the main pumping units | year | | |
(3) Power Supply | | | |
Generally inspect the Power Co.'s transmission line installations in the vicinity of the pumping plant | month | | |
3. Trash Racks | | | |
Condition of metal work. | year | | |
Anchorage. | year | | |
Note debris in rack and pool that should be removed | day (during plant operation) | | |
4. Gates and Hoists | | | |
(a) Slide Gates | 6 months | | |
(1) Gates | | | |
Check condition of metal work, etc. | | | |
Check anchor and connections for tightness and wear. | | | |
Inspect seal bearing surfaces for condition and need for lubrication. | | | |
<table>
<thead>
<tr>
<th>ITEM</th>
<th>PERIOD</th>
<th>REMARKS</th>
<th>DATE, MAINT., & INITIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When practical check gate for adequacy of sealing when gate is closed.

Note any debris, etc., which may restrict free movement of the gate leaf.

(2) Hoist

Check for proper functioning.

Note need for lubrication cleaning, etc.

Inspect hoist stem guides, connections, etc., and note any need for maintenance.

Check position of hoist stem to insure that gate is in position desired.

Note condition of all metal work, anchors, etc.

b. Flap Gates

Condition of seals week
Condition of metal work 6 months
Functioning during operation day
Note any indication of leakage when closed week

Miscellaneous

EXHIBIT F
Sheet 7 of 8
ITEM

5. Fire Protection Equipment
 a. Check extinguishers.
 b. Note any possible fire hazards in and around the pumping plant and other installations.

6. Staff Gages
 a. Condition of woodwork.
 b. Are all in place.
 c. Condition of painted surfaces

7. Pumping Plant Structure

8. Miscellaneous
 a. Note need for policing the area around the pumping plant and other installations
 b. Painting: Check all metal work and note rust spots need for painting or other maintenance.
 c. Hazards: Check all covers to insure that they are in place.
 d. Water Stage Recorder

NOTE:
1. The period indicated is to serve as a general guide. (More frequent inspections shall be made if operating experience and type of service for a particular period justifies.)
2. Under "Remarks" briefly indicate maintenance, adjustment, etc., required.
3. When required maintenance, etc., has been completed, indicate date and initial.
4. Daily inspections are applicable only to periods of pumping operations; and when pumps are operating continuously during flood conditions should be made at least once every 8-hour shift. See also requirements set forth in paragraph 208.10 (f) of Federal Regulations, EXHIBIT "A" of this manual.
EXHIBIT G

Mechanical-Electrical Equipment

Lubrication Schedule
EXHIBIT G
Mechanical-Electrical Equipment
Lubrication Schedule

PROJECT: Lower San Joaquin River Pumping Plant or Interior Drainage

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Lubricant</th>
<th>Period</th>
<th>Every</th>
<th>Period</th>
<th>(During pumping operations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Main Pump-Motor Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Pumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Drainage Pumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump bearings</td>
<td>Oil: SAE 10 oil (non detergent)</td>
<td>Check daily; add as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease: RPM Chassis/Check twice daily;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease T-B Medium,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Oil Co. or Approved equal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Main Pump Motor</td>
<td>Oil: Calol Turbine</td>
<td>Check daily; add No. 11 or 15 as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease: Calol BRB-340</td>
<td></td>
<td>Check daily; add as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Electrical System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Motor Bearings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball or roller</td>
<td>Calol BRB-340</td>
<td>6 months Check daily.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Switches general</td>
<td>Tranoil Oil</td>
<td>Monthly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Switch-hinge pins</td>
<td>Tranoil Oil with graphite</td>
<td>Monthly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Relays</td>
<td>General Electric Co. special relay oil</td>
<td>6 months</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXHIBIT G
Sheet 1 of 3
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Lubricant</th>
<th>Period Every</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(During pumping operations)</td>
</tr>
<tr>
<td>(5) Theostat contacts</td>
<td>Light coat of vaseline</td>
<td>After cleaning and dressing.</td>
</tr>
<tr>
<td>(7) Push-button contacts</td>
<td>Petroleum</td>
<td>6 months</td>
</tr>
<tr>
<td>(8) Cleaning solvent</td>
<td>"Stoddard" solvent/ 6 months</td>
<td>Note: When cleaning any part of electrical equipment, use ample precaution to prevent explosions and fires.</td>
</tr>
</tbody>
</table>

3. Trash Racks

None

4. Gates and Hoists

a. Slide Gates

(1) Gates

- Seal bearing surfaces: Calol WP No. 1 grease. 6 months
- Miscellaneous: Rust preventative/ 6 months NO-OX-ID, Type E.

(2) Hoist

5. Flap Gates

a. Hinge

Calol WP No. 1 Apply to pin when assembling and coat outside after assembly.
6. **General Notes**

a. There are many lubricants suitable for service as pertain to the above items of equipment. The trade names indicated above are listed as being representative; any equivalent lubricant may be used.

b. Manufacture of lubricants specified above.

 (1) UNO - Union Oil Co.
 (2) NO-OX-ID - Dearborn Chemical Co.
 (3) Calrol - Standard Oil Co. of California
 (4) Transoil - General Electric Co.
 Special oil for electrical equipment.
 (5) RPM - Standard Oil Co. of California
 (6) "Stop-Rust" - The Delta Mfg. Co., Milwaukee, Wisconsin
 (7) Stoddard Solvent - Described in U. S. Bureau of Standards as "Commercial Standard GS-3-28"

c. **Electrical equipment** shall be lubricated only where recommended by the equipment manufacturers or in accordance with best accepted practice for the service. Where lubrication is required, lubricate adequately but sparingly, wiping off any excess lubricant, as oily surfaces collect dust and may result in an arc between live parts.

d. The above schedule is provided as a general guide in the absence of specific recommendations from the manufacturer of the respective items of equipment. Use only the best grades of lubricants and of the type and in accordance with the manufacturer's recommendation where available. When in doubt consult with one of the manufacturers of lubricants suitable for the service.
EXHIBIT H

Sample Log Form Recording and Reporting Operation of Pumping Plant During Flood Period
SAMPLE LOG FORM FOR RECORDING AND REPORTING

OPERATION OF PUMPING PLANT DURING EXTREME EMERGENCY FLOOD CONDITIONS

<table>
<thead>
<tr>
<th>DATE:</th>
<th>PLANT:</th>
<th>SUPERINTENDENT:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pump No</th>
<th>Start Water Level</th>
<th>Stop Water Level</th>
<th>Remarks*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time Sump River</td>
<td>Time Sump River</td>
<td></td>
</tr>
</tbody>
</table>

*Brief note under Remarks with reference to more detailed comments on an attached sheet. Service interruptions, if any: abnormal high temperature of motor; abnormal noise; improper functioning of automatic controls and appurtenances, including time duration and cause. This form should be used only when operators are on duty continuously.
SAMPLE LOG FOR: FOR RECORDING AND REPORTING
OPERATION OF PUMPING PLANT DURING PERIODIC VISITS

<table>
<thead>
<tr>
<th>DATE:</th>
<th>PLANT:</th>
<th>SUPERINTENDENT:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pump No.</th>
<th>Time</th>
<th>Pump Operating (yes - No)</th>
<th>Water Level</th>
<th>Remarks*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sump</td>
<td>River</td>
</tr>
</tbody>
</table>

*Brief note under Remarks with reference to more detailed comments on attached sheet describing any unusual or abnormal conditions observed.
OPERATION OF AUXILIARY EQUIPMENT AND
MISCELLANEOUS PLANT FACILITIES DURING PERIODIC VISITS

DATE: ___________________ PLANT: ___________________ SUPERINTENDENT: ___________________

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Time</th>
<th>Remarks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pump controller and indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Automatic float operated water level recorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Main switch board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Flap gates in pump discharge lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Trash racks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Slide gates in discharge conduits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Lighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Brief note under Remarks and reference to more detailed comments on an attached sheet with appropriate cross references. See EXHIBITS D, F, AND G for a guide as to breakdown of the respective items checked. Note in particular any abnormal noise, malfunctioning of equipment or any condition that develops that may or does impair the operation of the plant or unit thereof. This form should also be used for recording applicable comments on unusual occurrences when operators are on duty continuously.
(Attachment for Sheet 1 of EXHIBIT H)

OPERATION OF PUMPING PLANT DURING EMERGENCY FLOOD CONDITIONS

<table>
<thead>
<tr>
<th>DATE:</th>
<th>PLANT:</th>
<th>SUPERINTENDENT:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pump No.</th>
<th>Time</th>
<th>Remarks (Reference Sheet 1 of Exhibit H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXHIBIT H

Sheet 1 of 5
(Attachment for Sheet 2 or 3 of EXHIBIT H)
OPERATION OF PLANT LURING PERIODIC VISITS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Time</th>
<th>Remarks (Reference Sheet 2 or 3 of Exhibit H)</th>
</tr>
</thead>
</table>

DATE: ___________________________ PLANT: ___________________________ SUPERINTENDENT: ___________________________