OPERATION AND MAINTENANCE

MANUAL

KLAMATH RIVER AT AND IN THE VICINITY OF KLAMATH, CALIFORNIA

DEL NORTE COUNTY, CALIFORNIA

JUNE 1972

REVISED MARCH 1974

U.S. ARMY ENGINEER DISTRICT, SAN FRANCISCO
CORPS OF ENGINEERS
SAN FRANCISCO, CALIFORNIA

This is the complete Manual
REMARKS

THE ATTACHED O&M MANUAL TITLED "KLAMATH RIVER AT AND IN VICINITY OF KLAMATH CALIFORNIA" SUPERSEDES THE MANUAL DATED JUNE 1972, WHICH SHOULD BE DESTROYED, AND IS FURNISHED FOR YOUR INFO, RETENTION AND ACTION.

Do NOT use this form as a RECORD of approvals, concurrences, disapprovals, clearances, and similar actions.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUTHORITY</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LOCATION</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>DESCRIPTION OF THE PROJECT</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>a. Klamath Townsite Portion</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>b. Klamath Glen Portion</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>c. Bank Protection Portion</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>PROTECTION PROVIDED</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CONSTRUCTION HISTORY</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LOCAL COOPERATION REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ASSURANCES OF COOPERATION</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ENTRY PERMITS</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>MAINTENANCE AND OPERATION</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PURPOSE</td>
<td>4.1</td>
</tr>
<tr>
<td>9</td>
<td>REGULATIONS</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>DUTIES OF SUPERINTENDENT</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>a. Training of key personnel</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>b. Streamflow stages</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>c. Semiannual report</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>d. Checklist</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>e. Proposed improvements or alterations</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>RIPRAP</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>INTERIOR DRAINAGE FACILITIES - GENERAL</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>RELIEF WELLS - KLAMATH GLEN</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>a. Description</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>b. Inspection</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>c. Maintenance</td>
<td>9</td>
</tr>
</tbody>
</table>

Rev. Mar 74
TABLE OF CONTENTS (Cont'd)

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>OUTLET STRUCTURE</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>a. Description</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>b. Operating conditions - general</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>c. Gates</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>d. Inspection</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>MECHANICAL DRAINAGE SYSTEM - Klamath Glen</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>a. General</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>b. Pumps</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>c. Right angle gear drive</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>d. Drive shaft</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>e. Engine</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>f. Trash rack</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>g. Engine control system</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>h. Warning device</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>i. Battery charger</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>j. Electrical power</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>k. Fuel storage tank</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>l. Water storage tank</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>m. Pump discharge lines</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>n. Grouted riprap</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>o. Engine building</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>p. System stoppage</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>q. Tools, lubricants and spare parts</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>r. Prompt repairs</td>
<td>24.1</td>
</tr>
<tr>
<td>16</td>
<td>FLOOD PLAIN MANAGEMENT</td>
<td>24.1</td>
</tr>
<tr>
<td>17</td>
<td>GENERAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMBATTING FLOOD CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SUGGESTED METHODS</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>a. Security</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>b. Inspection of flood control works</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>c. Preliminary repair work</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>d. Disaster relief</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>e. Checklist</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>f. Flood fight</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>g. Liaison with District Engineer and use of Government plant</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>h. Flood Emergency Manual</td>
<td>31</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont'd)

EXHIBITS

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CODE OF FEDERAL REGULATIONS, TITLE 33, SECTION 208.10</td>
</tr>
<tr>
<td>B</td>
<td>RESOLUTIONS OF COOPERATION NO. 67-43 AND NO. 68-11 OF DEL NORTE COUNTY BOARD OF SUPERVISORS AND LETTERS FROM DEL NORTE COUNTY ROAD COMMISSIONER AND COUNTY ENGINEER RELATIVE TO LAND, EASEMENTS AND RIGHTS-OF-WAY LETTERS FROM COUNTY ENGINEER WITH RESPECT TO KLAMATH RIVER BANK PROTECTION</td>
</tr>
<tr>
<td>C</td>
<td>FLOOD PLAIN ZONING AT MOUTH OF KLAMATH RIVER</td>
</tr>
<tr>
<td>D</td>
<td>REFERENCE ELEVATIONS FOR FLOOD PLAIN ZONES</td>
</tr>
<tr>
<td>E</td>
<td>SEMIANNUAL REPORT</td>
</tr>
<tr>
<td>F</td>
<td>MAINTENANCE CHECKLIST</td>
</tr>
<tr>
<td>G</td>
<td>SUGGESTED METHODS OF EMERGENCY PROTECTION - 5 PLATES</td>
</tr>
</tbody>
</table>

Klamath Townsite (File No. 59-39-23 Series)

<table>
<thead>
<tr>
<th>Sheet No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vicinity Map, Location Plan and Schedule of Drawings</td>
</tr>
<tr>
<td>2</td>
<td>Plan and Profile, Station 254+00 to Station 263+00</td>
</tr>
<tr>
<td>3</td>
<td>Plan and Profile, Station 263+00 to Station 293+00</td>
</tr>
<tr>
<td>4</td>
<td>Plan and Profile, Station 293+00 to Station 312+00</td>
</tr>
<tr>
<td>5</td>
<td>Cross Sections, Station 254+00 to Station 282+00</td>
</tr>
<tr>
<td>6</td>
<td>Cross Sections, Station 285+00 to Station 300+00</td>
</tr>
<tr>
<td>7</td>
<td>Typical Sections and Details</td>
</tr>
<tr>
<td>8</td>
<td>Inlet Structure Details</td>
</tr>
<tr>
<td>9</td>
<td>Junction and Manhole Structure Details</td>
</tr>
</tbody>
</table>

Klamath Glen (File No. 59-39-33 Series)

<table>
<thead>
<tr>
<th>Sheet No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vicinity Map, Location Plan, Borrow Area and Schedule of Drawings</td>
</tr>
<tr>
<td>2</td>
<td>Plan and Profile - Station 0-05 to Station 30+00</td>
</tr>
<tr>
<td>3</td>
<td>Plan and Profile - Station 30+00 to Station 55+00</td>
</tr>
<tr>
<td>4</td>
<td>Plan and Profile - Station 55+00 to Station 89+11</td>
</tr>
<tr>
<td>5</td>
<td>Cross Sections</td>
</tr>
<tr>
<td>6</td>
<td>Cross Sections</td>
</tr>
<tr>
<td>7</td>
<td>Details and Typical Sections</td>
</tr>
<tr>
<td>8</td>
<td>Details - Pipe Drop Inlet and Levee Crossing</td>
</tr>
<tr>
<td>9</td>
<td>Miscellaneous Details</td>
</tr>
</tbody>
</table>

Rev. Mar 74
TABLE OF CONTENTS (Cont'd)

<table>
<thead>
<tr>
<th>Sheet No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Drainage Structures - Structural Plan, Profile, Sections and Details</td>
</tr>
<tr>
<td>11</td>
<td>Gate Wells - Structural Plan, Sections and Details</td>
</tr>
<tr>
<td>12</td>
<td>Pumping Station - Structural Plan, Profile, and Elevations</td>
</tr>
<tr>
<td>13</td>
<td>Pumping Station - Structural Plan and Sections</td>
</tr>
<tr>
<td>14</td>
<td>Pumping Station - Structural Sections</td>
</tr>
<tr>
<td>15</td>
<td>Pumping Station - Structural Sections and Details</td>
</tr>
<tr>
<td>16</td>
<td>Pumping Station - Mechanical and Piping Layout</td>
</tr>
<tr>
<td>17</td>
<td>Pumping Station - Mechanical Miscellaneous Details</td>
</tr>
<tr>
<td>18</td>
<td>Pumping Station - Mechanical and Electrical Details</td>
</tr>
<tr>
<td>19</td>
<td>Relief Well Details</td>
</tr>
<tr>
<td>20</td>
<td>Logs of Exploration Holes - Station 0+05 to Station 21+00</td>
</tr>
<tr>
<td>21</td>
<td>Logs of Exploration Holes - Station 21+00 to Station 55+00</td>
</tr>
<tr>
<td>22</td>
<td>Logs of Exploration Holes - Station 55+00 to Station 89+11</td>
</tr>
<tr>
<td>23</td>
<td>Borrow Area</td>
</tr>
<tr>
<td>24</td>
<td>Boat Ramp Access and Utility Modifications</td>
</tr>
</tbody>
</table>

Klamath River Bank Protection (File No. 59-40-3 Series)

<table>
<thead>
<tr>
<th>Sheet No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vicinity Map, Location Map, Schedule of Dwgs, Horizontal and Vertical Control</td>
</tr>
<tr>
<td>2</td>
<td>Plan and Profile - Station 0+50 to Station 26+00</td>
</tr>
<tr>
<td>3</td>
<td>Plan and Profile - Station 26+00 to Station 53+00</td>
</tr>
<tr>
<td>4</td>
<td>Plan and Profile - Station 53+00 to Station 73+50</td>
</tr>
<tr>
<td>5</td>
<td>Cross Sections</td>
</tr>
<tr>
<td>6</td>
<td>Cross Sections and Typical Sections and Details</td>
</tr>
<tr>
<td>7</td>
<td>Logs of Borings</td>
</tr>
<tr>
<td>8</td>
<td>Borrow Area and Logs of Test Pits</td>
</tr>
</tbody>
</table>

iv

Rev. Mar 74
FOREWORD

On 7 November 1966, the Congress approved construction by the Corps of Engineers of a flood control project on Klamath River, Del Norte County, California, situated generally in the river reach between the mouth and about 8.5 miles upstream. Actual construction effort was concentrated in the Klamath Townsite and Klamath Glen areas. Flood damage in flood plain areas not protected by structural measures will be controlled through flood plain management.

In 1970, the Congress modified the project to add protection of the north bank of the Klamath River for approximately two miles from Klamath Townsite to Larson's Quarry.

An Operation and Maintenance Manual, dated November 1969, was prepared by the U.S. Army Engineer District, Corps of Engineers, San Francisco, California, to acquaint responsible local interests with the requirements for maintaining the rip-rap protection and interior drainage features and enforcing the flood plain management requirements incorporated in the Klamath Townsite portion of the authorized project. The manual was revised in June 1972 to include the Klamath Glen portion of the project.

This revised manual, prepared upon completion of the Klamath River Bank Protection portion of the project, fully covers all features of the entire authorized project. Timely and effective maintenance in accordance with this manual is required to assure continuation of beneficial results from all portions of the project.
INTRODUCTION

1. AUTHORITY

The Klamath River at and in the Vicinity of Klamath, California, Flood Control Project, Del Norte County, California, was authorized by the Flood Control Act of 1966, Public Law 89-789, 89th Congress, 2d Session, enacted 7 November 1966, which reads in part as follows:

"Section 203. The following works of improvement for the benefit of navigation and the control of destructive floodwaters and other purposes are hereby adopted and authorized to be prosecuted under the direction of the Secretary of the Army and the supervision of the Chief of Engineers in accordance with the plans in the respective reports hereinafter designated and subject to the conditions set forth therein:

* * * * * * *

The project for flood protection on the Klamath River at and in the vicinity of Klamath, California, is hereby authorized substantially in accordance with the recommendations of the Chief of Engineers in House Document Numbered 478, Eighty-ninth Congress, at an estimated cost of $2,460,000."

Section 215 of the Rivers and Harbors Act of 1970 reads in part as follows:

"The project for flood protection on the Klamath River at and in the vicinity of Klamath, California, authorized by the Flood Control Act of 1966 (80 Stat. 1205), is hereby modified to require the Secretary of the Army, acting through the Chief of Engineers, to provide, as an essential part of the project, bank protection works extending approximately two miles downstream from the project to protect the north bank of the river from erosion due to Klamath River flows."***"

2. LOCATION

a. The Klamath Townsite portion of the authorized project extends from approximately River Mile 2 to River Mile 3 on the Klamath River at Klamath Townsite, Del Norte County, California.
b. The Klamath Glen portion of the authorized project extends from approximately River Mile 5.5 to River Mile 7.5.

c. The Klamath River Bank Protection portion of the project as authorized by the 1970 modification extended the protection on the right bank or north bank at the river from approximately River Mile 0.2 to 2.0.

3. DESCRIPTION OF THE PROJECT

a. Klamath Townsite Portion. The California Division of Highways and the San Francisco District, Corps of Engineers, through cooperative planning, developed an alternative plan to the plan authorized in House Document No. 478. The alternative plan combined highway construction and flood control features for the Town of Klamath. In order to provide flood protection as soon as possible for the Town of Klamath, the State of California advanced its program for construction of U.S. Highway 101 in the vicinity of the Town of Klamath by approximately ten years. The State of California constructed an embankment with riverward slope protection as part of U.S. Highway 101. The Corps of Engineers' portion of the project primarily entailed filling, to standard project flood elevation, the confined depression between the highway embankment and the steep canyon wall bordering the proposed townsite, and installing a gravity system of interior drainage. The fill area consists of a strip of land on the north side of the Klamath River, 100 feet to 700 feet wide and about 4,500 feet long, centered 2.5 miles upstream from the river mouth. This area of about 48 acres is the new Klamath Townsite.

b. Klamath Glen Portion. Approximately 8,900 feet of revetted levee, encircling Klamath Glen, is the primary feature of this portion of the authorized project. Interior runoff relief is provided by one 48-inch gravity flow culvert. A V-shaped channel on the landward side of the levee, from Station 84+00 to Station 22+00, will carry surface runoff and the seepage outflow of perforated pipe-subdrains to a 9-acre ponding area specially prepared within a 27-acre ponding easement. The prepared pond also serves as the forebay for the pumping plant, consisting of three pumps, diesel powered engines and controls. The total ponding area is sufficient to impound interior runoff from a standard project flood.

c. Bank Protection Portion. This portion consists of 7,300 feet of riprapped protection along the north bank of the Klamath River from the end of the existing riprap along U.S. Highway 101 to Larson's Campsite some 600 feet downstream of the Requa Inn where it ties into existing riprap along the bank. Tie backs extend approximately seventy five feet into Hunter and Salt Creeks.
4. PROTECTION PROVIDED

a. The Klamath Townsite portion of the project, as constructed, provides standard project flood protection for the 48-acre area adjacent to the portion of relocated Highway U.S. 101 which extends northward from the new Highway U.S. 101 Bridge across the Klamath River. The riprapped highway embankment was constructed to an elevation of two feet above standard project flood water surface.

b. The Klamath Glen portion of the project, as constructed, provides protection against a standard project flood to the community of Klamath Glen. The levee height provides a 5-foot freeboard above standard project flood water surface.

c. The Klamath River Bank Protection project protects the right or north bank of the extreme downstream end of the Klamath River from erosion damage during the standard project flood. No protection against inundation is intended.

5. CONSTRUCTION HISTORY

a. Construction of the Townsite portion of the project was initiated in April 1968 and completed in October 1968. A joint inspection was held on 24 October 1968 by the Corps of Engineers and officials from the Del Norte County Engineer's office. The project was officially transferred to Del Norte County for operation and maintenance on 14 November 1968.

b. Construction of the Klamath Glen portion was initiated in January 1971 and completed in November 1971. A joint inspection was held on 17 November 1971 attended by representatives of the Corps of Engineers and the Del Norte County Engineer's office. The project was officially transferred to Del Norte County for operation and maintenance on 7 February 1972.

c. Construction of the Klamath River Bank Protection portion was initiated in July 1972 with the intention that it be completed in 1973. Due to favorable conditions, work was completed in November 1972. A joint inspection was held on 20 November 1972 attended by representatives of the Corps of Engineers and the Del Norte County Engineer's office. The project was officially transferred to Del Norte County for operation and maintenance on 7 December 1972.

LOCAL COOPERATION REQUIREMENTS

6. ASSURANCES OF COOPERATION

By Resolution No. 67-43 dated 24 April 1967, the Del Norte County Board of Supervisors stated:
"FURTHER RESOLVED that in the event the United States Government adopts and authorizes the proposed plan of improvement, it is the declaration of this Board to cooperate with the U.S. Army Corps of Engineers in the accomplishment of the aforesaid project as follows:

"a. Provide without cost to the United States all lands, easements, and rights-of-way necessary for construction and functioning of the project;

"b. Hold and save the United States free from damages due to the construction works;

"c. Maintain and operate all the works after completion in accordance with regulations prescribed by the Secretary of the Army, and manage the historical flood plain within the eight-and-one-half mile reach above the mouth of the Klamath River in accordance with Paragraph 'f' below;

"d. Adjust all claims regarding water rights arising from construction of the project;

"e. Make any alterations to existing improvement which may be required because of the project, and

"f. Prevent any encroachment on the constructed works, ponding areas, and flood plain management areas which might interfere with the proper functioning of the project, lessen its beneficial effects, or reduce its design capacity; and, if ponding or flood plain management is impaired, provide promptly without cost to the United States substitute storage or equivalent pumping capacity and such flood-control works as required to protect the management areas.

Further, by Resolution No. 68-11 dated 13 February 1968, the Del Norte County Board of Supervisors stated:

"NOW THEREFORE, BE IT RESOLVED that this Board affirms and agrees to provide the local cooperation set forth in Resolution No. 67043 in connection with the present proposed project at Klamath and be it further resolved that WILLIAM W. SPEER, County Counsel and/or LAVERNE M. NELSON, County Road Commissioner, be, and each of them is hereby authorized to certify to the Army Corps of Engineers on behalf on this Board that it has obtained all lands, easements, and rights-of-way necessary for the performance of the proposed work at Klamath."
7. ENTRY PERMITS

Entry permits for the project were furnished by the Del Norte County Board of Supervisors acting through the Del Norte County Road Commissioner and County Engineer. Pertinent resolutions of the Board of Supervisors and correspondence granting lands, easements and rights-of-way for construction purposes are given in Exhibit B.

MAINTENANCE AND OPERATION

8. PURPOSE

The purpose of this manual is to assist the responsible local authorities in carrying out their obligations through provision of information and advice as to the operation and maintenance requirements of the project. The construction plans appended to this manual are included as an aid in proper maintenance and should be referred to. Maintenance of electrical and mechanical equipment should be performed according to instructions in manuals furnished by manufacturers. Particular attention should be given to the maintenance required in the manufacturer's warranty.

9. REGULATIONS

Section 208.10, Title 33 of the Code of Federal Regulations contains rules for the maintenance and operation of local flood protection works provided by the Secretary of the Army in accordance with authority contained in Section 3 of the Flood Control Act of 22 June 1936, as amended and supplemented. A copy of the complete regulations will be found in Exhibit A. Compliance with these regulations is one of the requirements of local cooperation. Applicable portions of the regulations are as follows:
"General

"(1) The structures and facilities constructed by the United States for local flood protection shall be continuously maintained in such a manner and operated at such times and for such periods as may be necessary to obtain the maximum benefits.

"(2) The State, political subdivision thereof, or other responsible local agency, which furnished assurance that it will maintain and operate flood control works in accordance with regulations prescribed by the Secretary of the Army, as required by law, shall appoint a permanent committee consisting of or headed by an official hereinafter called the 'Superintendent,' who shall be responsible for the development and maintenance of, and directly in charge of, an organization responsible for the efficient operation and maintenance of all of the structures and facilities during flood periods and for continuous inspection and maintenance of the project works during periods of low water, all without cost to the United States.

"(3) A reserve supply of materials needed during a flood emergency shall be kept on hand at all times.

"(4) No encroachment or trespass which will adversely affect the efficient operation or maintenance of the project works shall be permitted upon the rights-of-way for the protective facilities.

"(5) No improvement shall be passed over, under, or through the walls, levees, improved channels or floodways, nor shall any excavation or construction be permitted within the limits of the project rights-of-way, nor shall any change be made in any feature of the works without prior determination by the District Engineer of the Department of the Army, or his authorized representative that such improvement, excavation, construction or alteration will not adversely affect the functioning of the protective facilities. Such improvements or alterations as may be found to be desirable and permissible under the above determination shall be constructed in accordance with standard engineering practice. Advice regarding the effect of proposed improvements or alterations on the functioning of the project and information concerning methods
of construction acceptable under standard engineering practice shall be obtained from the District Engineer or, if otherwise obtained, shall be submitted for his approval. Drawings or prints showing such improvements or alterations as finally constructed shall be furnished the District Engineer after completion of the work.

"(6) It shall be the duty of the superintendent to submit a semiannual report to the District Engineer covering inspection, maintenance and operation of the protective works.

"(7) The District Engineer or his authorized representatives shall have access at all times to all portions of the protective works.

"(8) Maintenance measures or repairs which the District Engineer deems necessary shall be promptly taken or made.

"(9) Appropriate measures shall be taken by local authorities to insure that the activities of all local organizations operating public or private facilities connected with the protective works are coordinated with those of the Superintendent's organization during flood periods.

"(10) The Department of the Army will furnish local interests with an Operation and Maintenance Manual for each completed project, or separate useful part thereof, to assist them in carrying out their obligations under these regulations."

10. DUTIES OF SUPERINTENDENT

In line with the provisions covered by the regulations, the general duties of the Superintendent should include the following:

a. Training of key personnel. Key personnel should be trained in order that regular maintenance work may be performed efficiently and to insure that unexpected problems related to flood control may be handled in an expeditious and orderly manner. The Superintendent should have available the names, addresses and telephone numbers of all his key men and a reasonable number of substitutes. These key men should in turn have similar data on all of the men that will be necessary for assistance in the discharge of their duties. The organization of key men should include the following:
An assistant to act in the place of the Superintendent in case of his absence or indisposition.

(2) Sector foremen in sufficient number of lead maintenance patrol work of the entire project during flood fights. High qualities of leadership and responsibility are necessary for these positions.

b. Streamflow stages. Permanent arrangements should be made by the Superintendent with the National Weather Service at Eureka, California, to secure forecasts of weather and potential flood conditions to plan adequate measures of protection.

c. Semiannual report. Attention is directed to paragraph 208.10 (a)(6) of the Flood Control Regulations (inclosed with this manual as Exhibit A) which states:

"(6) It shall be the duty of the superintendent to submit a semiannual report to the District Engineer covering inspection, maintenance, and operation of the protective works."

The report should be submitted within a ten-day period, prior to 1 June and 1 December of each year and should include dated copies of all reports of inspection made during the period of report. The report should also include the nature, date of construction and date of removal of all temporary repairs and dates of permanent repairs. In accordance with the regulations, inspections will be made prior to the beginning of the flood season and, otherwise, at intervals not to exceed 90 days. Immediate steps shall be taken to remedy any adverse conditions disclosed by such inspections. A form for this report is shown in Exhibit E, if space in form is insufficient, attach additional sheets.

d. Checklist. The checklist shown in Exhibit F should be used in each inspection to insure that no features of the protective system are overlooked.

e. Proposed improvements or alterations. Drawings or prints of proposed improvements or alterations to the existing Flood Control Works must be submitted for approval to the District Engineer, U.S. Army Engineer District, San Francisco, Corps of Engineers, San Francisco, California, sufficiently in advance of the proposed construction to permit adequate study and consideration of the work. The Del Norte County Road Commissioner and County Engineer shall review all proposed plans of improvement for appropriateness and assurance that the improvements are located on the plans with proper reference to project centerline station. This review will be accomplished prior to submittal to the District Engineer. Drawings or prints, in duplicate, showing any improvements or alterations as finally constructed should be furnished to the District Engineer, U.S. Army Engineer District, Corps of Engineers, after completion of the work.
11. RIPRAPH

Inspection and maintenance of riprap shall be in accordance with paragraph 208.10 (b) of Exhibit A which states in part:

"The Superintendent shall provide at all times such maintenance as may be required to insure serviceability of the structures in time of flood. Periodic inspections shall be made by the Superintendent to insure that maintenance measures are being effectively carried out and, further, to be certain that:

(vi) No revetment work or riprap has been displaced, washed out, or removed.

Such inspection shall be made immediately prior to the beginning of the flood season; immediately following each major high water period, and otherwise at intervals not exceeding 90 days. Immediate steps will be taken to correct dangerous conditions disclosed by such inspections."

12. INTERIOR DRAINAGE FACILITIES - GENERAL

Inspection and maintenance of drainage structures shall be in accordance with paragraph 208.10 (a) General, (see paragraph 9 of this manual) and 208.10 (d) which states in part:

"Drainage structures

(1) Maintenance. Adequate measures shall be taken to insure that inlet and outlet channels are kept open and that trash, drift, or debris is not allowed to accumulate near drainage structures. Periodic inspections shall be made by the Superintendent to be certain that:

(a) Pipes, gates, operating mechanism, riprap, and headwalls are in good condition;

(b) Inlet and outlet channels are open;

(c) Care is being exercised to prevent the accumulation of trash and debris near the structures and that no fires are being built near bituminous coated pipes;

(d) Erosion is not occurring adjacent to the structure which might endanger its water tightness or stability."
General maintenance measures shall include keeping all ditches, inlet structures, culverts, manholes, subdrain outlets, etc., clear of trash, debris, and growth that may cause any obstruction to flow. These measures should also include any repairs necessary to restore the works to their original condition.

13. RELIEF WELLS - KLAMATH GLEN

a. Description. Thirty-four relief wells have been installed at the land side levee toe. Locations and details of relief well installations are as indicated hereinafter in tabular form.

b. Inspection. The relief wells shall be sounded annually to check for sanding. The inspection should include an examination of the cover plates, locks, tee outlets and other appurtenances, and of any indication of piping or slumping of the ground around or near wells. Relief wells shall be pump tested at 5-year intervals to obtain the specific yield of the well (gallons per minute per foot of well screen per foot of well drawdown). If this yield is less than 80 percent of the installed yield as hereinafter indicated, corrective treatment surging and flushing shall be made and the well pump tested again. The wells shall be checked for sanding before and after each pumping. Damage to relief wells and associated discharge systems shall be corrected as soon as practicable. During periods of high stream flow, the relief wells shall be checked for discharge to determine specific yield and possible sanding. Results of inspections shall be reported to the District Office, Engineering Division, ATTN: F & M Branch. Relief wells which do not function properly during periods of high stream flow shall be reported immediately to the above by telephone (area code 415 556-3309).

c. Maintenance. Prior to 15 October of each year the relief wells shall be sounded to determine the amount of sand that has accumulated in the bottom of the pipes. If there is more than 12 inches in the wells, they are to be flushed with a mixture of air and water until all the material has been removed from inside the pipes. In addition, any trash or debris which has accumulated in the outlets of collector pipes shall be removed. Damaged relief wells and associated discharge systems shall be corrected as soon as practicable. Wells which sand badly shall be filled with concrete and replacement wells installed.
RELIEF WELL DATA

KLAMATH GLEN, CALIFORNIA

<table>
<thead>
<tr>
<th>WELL NO.</th>
<th>STATION</th>
<th>ELEVATION OF TOP OF RISER PIPE</th>
<th>DEPTH OF HOLE FROM TOP OF RISER PIPE</th>
<th>RATE GPM</th>
<th>DURATION HR</th>
<th>DRAWDOWN FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABANDONED</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>80+00</td>
<td>50.4'</td>
<td>62'</td>
<td>150</td>
<td>.1</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>77+00</td>
<td>48.1'</td>
<td>55'</td>
<td>50</td>
<td>.25</td>
<td>5.7</td>
</tr>
<tr>
<td>4</td>
<td>74+00</td>
<td>47.8'</td>
<td>52'</td>
<td>500</td>
<td>6</td>
<td>.9</td>
</tr>
<tr>
<td>5</td>
<td>72+25</td>
<td>48.4'</td>
<td>89'</td>
<td>600</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>70+90</td>
<td>52.2'</td>
<td>90.5'</td>
<td>500</td>
<td>6</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>69+90</td>
<td>49.0'</td>
<td>91'</td>
<td>700</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>68+85</td>
<td>48.5'</td>
<td>91'</td>
<td>500</td>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>9</td>
<td>67+82</td>
<td>47.5'</td>
<td>91'</td>
<td>500</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>66+71</td>
<td>47.4'</td>
<td>84'</td>
<td>860</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>66+05</td>
<td>48.8'</td>
<td>72'</td>
<td>425</td>
<td>6</td>
<td>.1</td>
</tr>
<tr>
<td>12</td>
<td>65+53</td>
<td>47.6'</td>
<td>72'</td>
<td>390</td>
<td>6</td>
<td>.3</td>
</tr>
<tr>
<td>13</td>
<td>65+01</td>
<td>46.6'</td>
<td>74'</td>
<td>400</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>64+50</td>
<td>46.6'</td>
<td>74'</td>
<td>400</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>63+98</td>
<td>46.7'</td>
<td>74'</td>
<td>360</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>63+48</td>
<td>47.8'</td>
<td>74'</td>
<td>360</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>62+96</td>
<td>48.0'</td>
<td>75'</td>
<td>400</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>62+43</td>
<td>46.9'</td>
<td>74.5'</td>
<td>410</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>61+92</td>
<td>46.7'</td>
<td>75.4'</td>
<td>510</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>61+41</td>
<td>46.7'</td>
<td>78'</td>
<td>400</td>
<td>6</td>
<td>.1</td>
</tr>
<tr>
<td>21</td>
<td>60+88</td>
<td>49.0'</td>
<td>80'</td>
<td>400</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>60+37</td>
<td>49.2'</td>
<td>81'</td>
<td>425</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>59+13</td>
<td>49.2'</td>
<td>72'</td>
<td>840</td>
<td>6</td>
<td>.8</td>
</tr>
<tr>
<td>24</td>
<td>57+14</td>
<td>49.2'</td>
<td>71.5'</td>
<td>820</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>55+14</td>
<td>49.2'</td>
<td>72.5'</td>
<td>830</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>52+65</td>
<td>49.9'</td>
<td>57.5'</td>
<td>630</td>
<td>6</td>
<td>2.4</td>
</tr>
<tr>
<td>27</td>
<td>49+67</td>
<td>50.7'</td>
<td>58.5'</td>
<td>630</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>46+66</td>
<td>49.9'</td>
<td>51'</td>
<td>500</td>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>29</td>
<td>43+66</td>
<td>46.7'</td>
<td>52'</td>
<td>400</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>40+66</td>
<td>46.7'</td>
<td>55'</td>
<td>500</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>20+00</td>
<td>46.7'</td>
<td>80'</td>
<td>-</td>
<td>.02</td>
<td>54</td>
</tr>
<tr>
<td>32</td>
<td>16+80</td>
<td>29'</td>
<td>69'</td>
<td>-</td>
<td>.04</td>
<td>46</td>
</tr>
<tr>
<td>33</td>
<td>13+55</td>
<td>29'</td>
<td>59'</td>
<td>-</td>
<td>.04</td>
<td>40</td>
</tr>
<tr>
<td>34</td>
<td>10+90</td>
<td>39.7'</td>
<td>67'</td>
<td>75</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>7+35</td>
<td>41.7'</td>
<td>67'</td>
<td>200</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>ABANDONED</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
14. GR AVITY DRAINAGE SYSTEM - KLAMATH GLEN OUTLET STRUCTURE

a. Description. The outlet structure is located at Station 17+25. It consists of concrete inlet and outlet structures, a 48-inch C.M.P. with bituminous coating and paved invert, and a concrete gatewell structure with a 48-inch circular slidegate and a 48-inch flapgate on the discharge end. The purpose of the outlet structure is to drain the water from the ponding area by means of gravity flow.

b. Operating conditions - general.

(1) Normal operating conditions, slidegate open. Runoff from behind the levee will collect in the pond. As long as the water surface in the pond is higher than the water surface on the Terwer Creek side, water will flow through the outlet structure by gravity. When the water surface in Terwer Creek is higher than the pond, the flapgate at the outlet end of the structure will close and prevent water from entering the ponding area through the outlet pipe. After the level of Terwer Creek has subsided and is lower than the water level of the pond, the flapgate will open and gravity flow will again take place. Unless the flapgate fails to function, the slidegate should remain open.

(2) Abnormal operating conditions. The possibility exists that the flapgate at the outlet end of the pipe may fail to function and not close. If the water level of Terwer Creek rises above the water level of the pond, water will flow from Terwer Creek to the ponding areas. When this situation occurs, the slidegate should be lowered to a closed position to prevent any flow from Terwer Creek. As long as the water surface in the creek is higher than the pond, the slidegate should remain closed until the flapgate can be repaired.

(3) Monthly machinery tests. In order to provide a shallow pond for testing or exercising the pumping machinery, it may be necessary to close the slidegate. Immediately after making such tests, the slidegate should be opened to the fully opened position.

CAUTION: During such tests, the water level in the pond should not be permitted to rise above elevation 28.0. This is necessary to preclude the possibility of damaging the slidegate. Also, by keeping the pond at or below this level, valuable storage space in the pond will not be excessively filled should a flood suddenly occur.

c. Gates.

(1) Flapgate. The flapgate is mounted on the discharge end of the outlet pipe. It is Waterman Model F-55f, cast iron drainage gate (flatback, machined iron seats). It is manufactured by Waterman Industries Inc., 515 South G Street, Exeter, California 93221. Its operation is automatic and requires no special maintenance effort or lubrication.
(2) **Slidegate.** The gate is a 48" Waterman Model SC-50f cast iron slidegate (flatback). It is designed for a maximum seating head of 50 feet and a maximum unseating head of 10 feet. It is manufactured by Waterman Industries Inc., 515 South G Street, Exeter, California 93221. It requires no special maintenance effort or lubrication.

(3) **Gate Lift.**

(a) **Description.** The lift is a Waterman Type 3EP-12:1 Lift. It is manufactured by Waterman Industries Inc., 515 South G Street, Exeter, California 93221. This unit features gear ratios of 4:1 on high speed and 12:1 on low speed. It has zerk type lubrication fittings. Any of the following commercial products can be used for lubrication:

- Standard Oil Company of California: Marine Lubriplate
- Conoco Oil Company: All Purpose Super Lube
- Texaco Inc.: Texaco Multifax Heavy Duty #2
- Shell Oil Company: Shell Alvania

(b) **Hand Operation.** The handle comes with a fitted hand grip and can be used with either gear ratios of 4:1 or 12:1. The handle is turned until the slidegate reaches the desired position.

(c) **Power Operation.** A gasoline engine powered wrench is furnished for rapid, powered operation of the gate lift. This device is manufactured by Homelite, a division of Textron Inc. located at 2234 Auburn Boulevard, Sacramento, California. The single cylinder, two-stroke cycle, 4 horsepower engine operates on a fuel mixture of 1/2-pint Homelite engine oil in each gallon of regular gasoline. One-half pint of SAE 30 oil can be used in lieu of the Homelite oil. Homelite SAE 90 gear oil is used in the gears. The power wrench engages either of the 3/4-inch square shafts on the gate lift. The gate lift handle should be removed before the power wrench is used.

(d) **Inspection.** After each storm, an inspection should be made to insure the following:

(1) That the interior drainage ditch, inlet structures, and pipe are all free of any deposition or debris which could hinder the normal operation of this system.

(2) That the inlet and outlet of the 48" pipe are free from any debris or deposition which would interfere with the free flow of water.

(3) That the flapgate is free from any debris or silt that could keep it from opening or closing freely.
(4) That the slidegate is in good operational condition.

(5) That the gatewell structure is free from any debris or deposition that would keep the slidegate from closing.

15. MECHANICAL DRAINAGE SYSTEM — KLAMATH GLEN

a. General.

(1) The mechanical drainage system consists of:

(a) Three engine-driven pumps
(b) Right angle gear drive
(c) Drive shafts
(d) Engines
(e) Grating
(f) Float switches
(g) Engine control systems
(h) Warning devices
(i) Battery chargers
(j) Commercial electric system
(k) Fuel Tank
(l) Discharge line
(m) Building

It is designed to operate automatically during stormy periods and for this reason it is independent of commercial electric power.

(2) The mechanical drainage system is designed to discharge water from the ponding area over the top of the levee under the following conditions:

(a) A condition in which the gravity outlet cannot function because the water surface on the Terwer Creek side of the levee is higher than the water surface in the pond.

(b) A condition in which the gravity outlet is functioning but unable to remove water as fast as it ponds in the ponding area.

(c) A condition in which the gravity outlet is shut to provide a shallow pond for the purpose of testing or exercising the machinery. (See CAUTION statement in paragraph 14.)

(3) Pumps are controlled by float switches which operate when water reaches a predetermined level. The engines are normally stopped when the water falls to a lower predetermined level. The engines are protected by an automatic stopping mechanism which will operate to stop the engine under any one of the following conditions:
(a) Overspeeding

(b) Overheating of coolant

(c) Low oil pressure

A grating at the intake of the pump chamber protects the pump from large floating debris. Operation is completely automatic and requires no operator in attendance. Periodic maintenance however is required.

b. Pumps.

(1) Description. Three identical pumps are provided. They are of the mixed-flow type having an oil lubricated lineshaft and a 24-inch below the base discharge elbow. They fit through an opening in the deck of the pump station and are suspended over that opening by a 1-1/2-inch thick steel base plate. The pumps are manufactured by the Johnston Pump Company, 1775 East Allen Avenue, Glendora, California 91740. The stainless steel lineshaft is held in alignment by bronze sleeve bearings. Since the bearing immediately above the impeller is water lubricated, the pumps must not be run unless the pond water surface is at elevation 24.0 or higher.

(2) Operation. Proper performance of these pumps requires that they operate at 750 RPM and that the impeller be adjusted correctly. Pumps and engines should be operated together at least once a year prior to flood season to make sure they function correctly and to adjust pump RPM with a load on the engines.

(a) Pump RPM is controlled by adjusting the engine speed. To obtain a pump speed of 750 RPM, the engine must operate at 2250 RPM. Pump RPM can be measured with a hand held tachometer (not furnished) at the top of the pump shaft. The pump shaft extends through the right-angle gear drive and is accessible by removing the cover on the top of the right-angle gear drive. The RPM on the pump shaft is multiplied by 3 to obtain the engine RPM. The purpose of RPM measurements and adjustments is to ensure a pump speed of 750 RPM, because this speed gives the best efficiency for the mechanical drainage system. The engine tachometer will be set by authorized workmen to read 2250 RPM when the pump shaft turns at 750 RPM. The overspeed stopping mechanism will be set on the basis of 3 times the pump speed rather than the engine tachometer because the engine tachometer is less accurate.

(b) Impeller adjustment consists of moving the pump shaft and impeller vertically by rotating a large nut at the top of the shaft. To obtain access to the nut, remove the top cover of the right-angle gear drive. Adjustment instructions are contained in Johnston Vertical Pumps - Installation, Operation and Maintenance Manual. This operation is best handled by a qualified pump man.
(3) Lubrication. Lubrication shall be in accordance with the lubrication chart, Installation, Operation and Maintenance Manual - Johnston Vertical Pumps. Note that oil drip rate must never be less than 5 drops per minute. Note also the recommended lubricant. The installation and operating portions of the Johnston manual should be studied insofar as they pertain to oil lubricated pumps. The oil reservoir on the solenoid oiler will be checked once each month and after each 50 hours of operation. Particular care must be taken that pumps are not run dry. Since the bearing immediately above the impeller bowls is water lubricated, there must be water to pump. Absence of such water will damage the pump if it is run.

(4) Maintenance. The pump intake should be periodically checked and debris removed. Precautions must be taken to prevent the engine from starting during this operation.

c. Right angle gear drive.

(1) Description. The right angle gear drive is a Randolph Model 20, vertical hollow shaft drive. It is mounted on the gear drive pedestal of each pump. Its weight is carried by the pump base plate. This is illustrated in Johnston drawing number H-4392-D in the Johnston Manual. It is manufactured by Randolph Manufacturing Company, Box 5306, Lubbock, Texas 79417. Manufacturer's literature may be found in the pump section of the manual. A certified dimension print, an illustrated parts list and operating and maintenance instructions are found at the back of the Johnston Manual. This drive serves three functions as follows:

(a) Supports the weight of all rotating pump parts by means of its hollow shaft through which the pump lineshaft runs. The pump lineshaft is supported at the top of this hollow shaft and a suitable radial bearing is provided in the right angle gear drive.

(b) Changes direction of the plane of rotation from horizontal to vertical.

(c) Provides a reduction in RPM in the ratio 3 turns on the horizontal shaft equals 1 turn on its vertical.

(2) Lubrication. The lubrication chart in the manufacturer's manual lists the proper lubricant as to type and grade. This particular installation requires oil changing at the end of each wet season. Periodic changes should be made every three months for the first year until a rate of water condensation can be determined. The oil capacity is 18 quarts per drive. The oil level is checked through a window. During operation, oil should cover the upper window on the right-angle gear drive.

(3) Cooling. There is no provision for liquid cooling. The drive is air cooled.
d. Drive shaft.

(1) Description. Three identical drive shafts are provided. Suitable adapters are provided to connect to the engine and to the right angle drive. The drive shafts are enclosed in a removable metal housing for safety purposes. Each drive shaft consists of a W-70 flange having a 2-3/4" bore, a W-70 flange having a 2-1/4" bore and a WVA-70 shaft. The WVA-70 shaft has a splined slip joint and two universal joints. The drive shafts are manufactured by H. S. Watson Company, 1316 - 67th Street, Emeryville, California 94608.

(2) Disconnection. When conducting monthly engine reliability and maintenance checks it may be necessary to run the engines without running the pumps. To do this, disconnect the drive shaft at the engine. Procedure:

(a) Disconnect batteries
(b) Remove guard
(c) Disconnect flanges at engine end by removing bolts
(d) Pull the shaft to rear to obtain clearance and place the driven end on suitable support. The slip joint should not be disassembled.

CAUTION: Drive shaft must be reconnected after engine tests. The pumping plant cannot provide emergency protection if drive shafts remain disconnected between engine tests.

(3) Connection proceeds in the reverse order.

(4) Disassembly and assembly. Disassembly and assembly are covered in the Installation Instructions, page 22 of "Watson Drive Shafts." Note that the yokes are to be in line.

(5) Lubrication. Lubrication is covered in Service Instructions, "Watson Drive Shafts." In view of the limited annual operating time, the shafts will be lubricated quarterly whenever the manufacturer's lubrication interval is longer.

e. Engine.

(1) General description. Three Caterpillar D334 diesel engines are provided, one for each pump. They are four stroke cycle diesel engines and described in the literature provided by the manufacturer, Caterpillar Tractor Company, 100 NE Adams Street, Peoria, Illinois 61602. To operate pumps at the required 750 RPM, the engines must operate at 2250 RPM, pump RPM being the more important factor. Engines must be started and the operating systems checked and maintained at least once every 30 days.
(2) **Cooling system features.**

(a) The cooling system is independent of the water being pumped. The engine is cooled in much the same manner as a liquid cooled automobile, truck or tractor engine.

(b) A radiator is provided for the coolant.

(c) A fan and necessary belting is provided. This fan causes the air to flow from the fan through the radiator, opposite to automotive practice.

(d) Anti-freeze protection is provided to 0°F.

(e) A coolant heater is provided. This heater is powered from the commercial power source. It aids in easy starting by maintaining a minimum temperature of 60°F.

(3) **Lubrication system.** A crankcase oil heater is provided. This is powered by commercial electric power. Its purpose is to minimize engine wear on starting and to provide for easy starting.

(4) **Starting system.** The engine uses a direct electric starting system which operates under full engine compression. A 24-volt starter is used. Four 6-volt batteries, connected in series, provide a 24-volt 200 ampere-hour source of direct current power.

(5) **Generating system.** An alternator and rectifier are provided to recharge the battery during the engine operating period.

(6) **Overcrank feature.** Each engine is provided with an overcrank protective device. This protects engine and batteries from prolonged overcranking in the event it fails to start. At least five cranking attempts are made, with rest periods between crankings of about 1 minute duration. At the completion of cranking attempts, in the event the engine fails to start a red warning light is illuminated on control panel and a red flashing light is illuminated on the roof of the building. CAUTION – PREVENT INJURY: These engines may make more than 5 cranking attempts. Unless the overcrank light is illuminated on the particular cranking panel of the engine concerned, assume that another cranking attempt will be made and that the engine will run.

(7) **Overspeed feature.** The overspeed feature is an automatic shut-off in the event of overspeed. This is set on delivery and its adjustment in the field is not recommended unless the work is done by Caterpillar men. In the event of an overspeed shut-off, warning lights within and outside the building are energized.
(8) **Low oil pressure safety shut-off.** Excessively low oil pressure will stop the engine with the illumination of proper warning lights as described above.

(9) **High coolant temperature shut-off.** High coolant temperature will shut off the engine with the illumination of appropriate lights as described above. In the absence of coolant, the control is inoperative. It is possible, therefore, for the engine to lose all its water and keep running with consequent damage. It follows that the radiator must be periodically checked to make sure that the coolant is at the proper level.

(10) **Glow plugs.** Glow plugs are present but not hooked up. They are not used.

(11) **Literature and instructions.** Literature and instructions have not been provided for the engine as a separate unit. Pending the arrival of such literature (Caterpillar Form GEG 00294 D334), another publication dealing with a D334 Electric Set (Caterpillar Form GEG 00737) has been provided as a temporary guide. This guide covers the engine but also covers generators not applicable to this installation. The sections "Engine Operation," "Lubrication and Maintenance Chart" and "Lubrication and Maintenance Procedures" are of extreme importance and must be followed. Where instructions or information is this manual differs from what is contained in the manufacturer's manual, the manufacturer's manual shall apply.

(12) **Testing of safety devices.** Obviously the conditions which cause the safety devices to shut off the engine are conditions which would damage the engine. Duplicating such conditions to test the safety devices is equally damaging. Such devices are best tested by an authorized Caterpillar repairman who will set up temporary electric circuits which have the same effect electrically as the damaging condition. In this way the safety devices can be tested without risk.

f. **Trash rack.** A trash rack is provided at the inlet to the pump station to prevent any debris from entering the pumps and disrupting their operation. Debris should be cleaned from the trash rack with the rakes provided.

g. **Engine control system.**

(1) **General description.** Each engine control system is an electrical device powered by 24-volt direct current from batteries. Three separate but identical systems are provided, one for each engine. The systems were built by Republic Electric and Development Company, 85 Jackson Street, Hayward, California 94544.
Each engine has a crank panel mounted on the building wall. Each panel is numbered to correspond to the number of the engine for identification purposes. There are four red lights on each panel which, when illuminated, indicate the reason an engine is inoperative. The lights are identified on the panel face as overcrank, overspeed, low oil pressure and high coolant temperature. A reset switch is provided. There is a three position control switch with positions labeled auto, manual and off.

(2) **Float switches.** There are three float switches, one for each pump. They consist of a mounting pedestal, a float, and the necessary operational circuits to complete or break electrical connections. The switches give an electrical signal to the control system when it is in an automatic running position. The presence of such a signal from the float switches will start the engine. The absence of such a signal will stop it. The switch is a Floatrol switch, class 3100, manufactured by Autocon Industries, Inc., 995 University Avenue, St. Paul, Minnesota 55104. The operational procedures are covered in the technical data supplied by the manufacturer. The water surface elevation at which the engines and pumps begin to operate can be changed. The floats are adjustable. Inspection should insure that the stilling well is free of any debris or obstruction that would hinder the movement of the float. Float switches can be jammed open and fail to shut off the engines if debris accumulates in the pipe enclosing the floats. This could lead to the extremely damaging condition of running the pumps dry which will result in pump failure. The pumps will also be damaged by dry running if the water level in the ponding area falls below 24 feet since float switches are out of the control circuits when the control switch is in manual position.

(3) **Operation.**

(a) The only way the engine can be started is by the electric cranking motor. The only way the engine can be stopped is by shutting off the fuel. All elaboration of controls rests on these facts. The fuel is shut off by sufficient movement of a rack in the fuel injection pump. The means of moving the rack are immaterial, the result is the same. Normally the rack is moved by a solenoid controlled by the control system.

(b) The cranking panel selector switch is normally in the automatic position, marked "auto." It is important that this switch be kept in the "auto" position except when the equipment is being tested or when maintenance or repair work is being done. When in this position, an electric current from the float switch automatically starts the engine. If the engine is running, the absence of current from the float switch causes the engine to idle for about 2 minutes, then shut off. The cranking panel is more than its name implies. It is an electrical control for:
1. Starting the engine in the manual position.

2. Stopping the engine immediately. (The engine may also be stopped by an engine mounted device.)

3. Starting the engine automatically on an electric signal from the float switch.

4. Stopping the engine automatically with suitable idle time in the absence of an electrical signal from the float switch.

5. Stopping the engine automatically in the event of low oil pressure.

6. Stopping the engine automatically in the event of high coolant temperature.

7. Cranking timing and overcrank features.

8. Stopping the engine in the event of overspeeding.

9. Actuating signal lights on the roof of the building.

10. Permitting an operator to reset the electrical control circuits, after a cause of shutdown has been determined and corrected. (Manual protective devices on the engine must be reset as well.)

11. Dropping the battery charger out of the 24-volt circuit during cranking.

(c) The manual position of the automatic control switch allows the engine to be started for maintenance and test purposes. It is independent of any float control.

(d) The off position of the automatic control switch stops the engine without an idling delay.

(4) Trouble shooting. Under certain conditions the control system may stop or fail to start the engine.

(a) Engine fails to start without any electrical indication of trouble:

Check batteries and battery charger.
(b) Engine stops or fails to start, roof light flashing, indicator light on crank panel on.

1. Move selector switch to OFF.

2. Disconnect both cables from batteries as an additional safety measure.

3. Disconnect drive shaft at engine end, unless there is sufficient water for pump operation.

4. Locate and correct the fault as indicated by the appropriate indicator light.

5. Actuate the engine mounted reset button applicable to the fault and actuate the engine mounted safety lever. Consult Caterpillar Form GEG 00225, Engine Operation, pages 5-8 in this regard.

6. Manipulate the reset switch on the cranking panel.

7. Reconnect batteries.

8. Run the engine on manual control observing its operation.

9. Stop engine by turning control to stop.

10. Connect the drive shaft.

11. Set control switch to automatic.

The operation of the control system is not simple and it must be understood. A study of Caterpillar literature in the engine section, the Redco section, and wiring diagrams will enable an operator to understand it. These should be studied carefully.

(5) Manufacturer's manual, drawings and literature.

(a) Redco Section of Manual: Four-light Cranking Panel.

(b) Floatrol Section of Manual: Redco Automatic Starting Controls.

(c) Wiring Section of Manual.

2. Republic Electric and Development Drawings.
 a. Engine Control PA-23869
 b. Outline PA-29290
 c. Wiring DC PB-23868
 d. Interconnect PB-29291
 e. Schematic DC PB-23867

(6) Maintenance and service. The functioning of this control system should be checked out by an authorized Caterpillar repairman immediately before the season of probable use, and at six-month intervals.

h. Warning device.

 (1) Description. Three warning lights are mounted on the roof of the pump house, one for each engine. They are red in color and have a revolving reflector giving a flashing effect.

 (2) Operation. Any fault indicated by an engine control system will operate the light for that engine.

 (3) Maintenance. Consult manufacturer's literature.

i. Battery charger.

 (1) Description. Three La Marche Model A-11 Battery Charges are provided, one for each engine. They are powered from commercial AC power sources. The chargers build up and maintain a charged condition in the storage batteries at all times except during the cranking of the engine concerned.

 (2) Literature. A manufacturer's manual is supplied with each charger.

 (3) Service. Adequately covered in the manufacturer's manual.

j. Electrical power.

 (1) Commercial. 120/240 AC electrical power is supplied from a commercial source for:
(a) Power and light in the pump station.
(b) The coolant heaters for Diesel engines.
(c) The lubrication oil heaters for the Diesel engines.
(d) The battery chargers.

If the power is cut off, the pump station will continue to function. However, it should be restored as soon as possible particularly since the AC battery charger will be inoperative.

(2) Battery. Four 6-volt 200 ampere-hour batteries connected in series are furnished with each engine. These batteries are the source of 24-volt D.C. power for:

(a) Starting the engine.
(b) Transmitting signals from the float switch mechanism.
(c) Operating the engine control system.

FAILURE OF THESE BATTERIES MEANS FAILURE OF THE ENGINE.

The specific gravity of the electrolyte (hydrometer reading) will be measured every 50 hours or weekly and a record kept of each cell reading. After the reading is taken, distilled water will be added as needed to bring the electrolyte to the proper level. The readings should be about 1300 to 1240. A prolonged period of low readings on the batteries of any one engine may be indicative of charger failure. A low reading on any one cell is indicative of battery failure.

k. Fuel storage tank. The two fuel storage tanks are fabricated from steel and each has a 1,000-gallon capacity. This is enough fuel for 50 hours of full speed operation. The level of fuel should be checked as a part of the periodic maintenance for the engines. The fuel in the tank should be drained and replaced with fresh fuel as often as recommended by the fuel supplier. A gravity drain for the entire fuel system is provided.

l. Water storage tank. The water stored in this tank is for use in the cooling system of the Diesel engines. It is not fit for human consumption. The water in the tank should be drained periodically. The roof strainer should be maintained free from any type of debris.
m. **Pump discharge lines.** Three 24-inch steel pipes, one for each pump, are provided. They should be examined for gasket failures and any exterior damage. The paint may require touch-up. The grill at the outlet end of each discharge pipe should be checked to insure that entry to the pipe is effectively prevented.

n. **Grouted riprap.** The strip of grouted riprap below the outfall from the pumps (Sta. 18+69) should be inspected each time the pump station is operated, to insure that the riprap has not been undermined, displaced, washed out or removed.

o. **Engine building.** The building that houses the engines is a prefabricated metal building. The building will require little or no maintenance. Proper precautions should be taken to insure that there are no obstructions to the flow of air through the building.

p. **System stoppage.** If one or more of the pumps is not discharging water properly and it is suspected that trash is fouling the pump, the following procedure can be used to flush water backwards through the pump to dislodge the trash.

1. Observe the discharge and see which pump is not working properly.

2. Set the selector switch on the appropriate cranking panel to "Manual."

3. Reduce engine speed to 600 RPM as indicated on engine tachometer using the head throttle.

4. Set the cranking panel selector switch to "OFF."

5. After engine stops, allow pumps to backflow until flow stops. Look in the sump to verify that flow has stopped.

7. Bring engine to operating RPM using head throttle.

8. Set cranking panel selector to "Automatic."

q. **Tools, lubricants and spare parts.** Items such as the powered wrench, grease guns, lubricants, spare filter elements for the diesel engines and various flood fighting materials, should be securely stored on or in the immediate vicinity of the project. It is emphasized that this is necessary so that these items will be available if needed without reliance on their having to be transported to the project during a flood over possibly impassable roads.
r. Prompt repairs. Any defect which prevents the mechanical drainage system from operating at full capacity will be corrected within 24 hours of its discovery.

FLOOD PLAIN MANAGEMENT

16. GENERAL

The historical flood plain for the lower 8.5-mile reach of the Klamath River consists of approximately 2,200 acres. As a part of local cooperation the Del Norte County Board of Supervisors is required to manage the historical flood plain exclusive of the flood-free areas of Klamath and Klamath Glen in accordance with the standards prescribed by Del Norte County Board of Supervisors' Ordinances Number 66-4, 66-5 and 67-10 and supplemental criteria established and furnished by the U.S. Army Corps of Engineers. In accordance with Ordinance Number 67-10 dated 1 November 1969, local interests have established flood plain regulations as follows:
"a. SECTION 3.1700 REGULATIONS FOR "FP-1" DISTRICTS
This district classification is intended to be applied to properties which lie within a primary flood zone which, for the purposes of this Ordinance, shall be construed to be a stream channel and the portions of the adjacent flood plain as are required to efficiently carry the floodflow of the stream, and on which properties special regulations are necessary for the minimum protection of regulations are necessary for the minimum protection of the public health and safety, and of property and improvements from hazards and damage resulting from flood waters.

The following regulations shall apply in all "FP-1" Districts, and shall be subject to the provisions of Chapters 4 and 5 of this Ordinance.

3.1701 Uses Permitted
(a) Public parks and recreation developments, boating facilities, campgrounds, and trailer parks operated on a seasonal basis between the months of May and November inclusive except as provided in Subsection (d) below. Rest rooms and utility facilities shall be located and constructed in accordance with Health Department requirements. Such buildings shall be designed to withstand inundation due to floods and shall be submitted to the Planning Commission for approval. Floating docks shall be sectional with no portion longer than 60 feet. Portable buildings and floating docks are to be removed from the zoned areas at the end of the season.

(b) Crop farming, truck gardening, livestock grazing, and other agricultural uses which are of the same or closely similar nature.

(c) Public utility wire and pipe lines for transmission and local distribution purposes.

(d) Travel trailers are permitted in trailer parks, and such trailer parks are permitted to operate to serve said travel trailers, between the months of December and April inclusive, providing that such travel trailer is maintained in a condition that will permit its removal from the flood plain without the need for a special towing vehicle or apparatus; that the access to such travel trailers, including but not limited to drives, roads, and
streets, be adequate to provide egress and ingress at any time under all weather conditions; that no cabanas, remadas, or structures shall be constructed, placed or attached to or adjacent such trailer; that each such travel trailer located in the "FP-1" District under the provisions of this subsection shall be limited to a period of stay not to exceed 7 consecutive calendar days.

3.1702 Uses Permitted with a Use Permit
The following uses, buildings, and structures when it is found by the Planning Commission that such buildings or structures will be so constructed or placed, or will be so protected by levees or other floodproofing that they will not be appreciably damaged, will offer a minimum obstruction to stream flow, and will resist floatation in the event of flooding. Dikes and other structures designed to protect properties from flooding shall be so constructed that they will not endanger life or restrict the flow or carrying capacity of the flood channels.

"(a) Single, non-expandable trailers not over 12 feet wide, maintained in a readily movable state, and having no auxiliary buildings attached thereto when they are occupied by the owner or caretaker of properties listed in 3.1701 (a).

(b) Commercial excavation of natural materials, filling of land areas, construction of levees, dikes, or other structures designed to protect property from natural flooding.

(c) Floating docks during off season.

(d) Private trailers on private parcels of ground used on a seasonal basis as in Section 3.1701 (a).

"b. SECTION 3.1800 REGULATIONS FOR "FP-2" DISTRICTS
This district classification is intended to be applied to properties which lie within areas where inundation is caused by overflow and back water which is relatively free of any current, excluding areas within the "FP-1" Districts, and so require regulations for the protections of such properties and their improvements from hazards and damage which may result from flood waters.
The following regulations shall apply in all "FP-2" Districts, and shall be subject to the provisions of Chapters 4 and 5 of this Ordinance.

3.1801 Uses Permitted
(a) Single family dwellings and accessory residential and agricultural structures located on agricultural properties, provided that the ground floor level of such buildings shall be above the flood profile level as shown on the zoning map of the particular area in question or provided that the building area is protected from flooding by dikes, levees or other safety measures.

(b) Public parks, recreation developments and trailer parks. Rest rooms and utility facilities shall be located and constructed in accordance with Health Department requirements. Such buildings shall be designed to withstand inundation due to floods.

3.1801 Uses Permitted with a Use Permit
(a) Single, non-expandable trailers not over 12 feet wide, maintained in a readily movable state, and having no auxiliary buildings attached thereto.

(b) Improvements to existing buildings, and accessory residential and agricultural structures whose floor level does not meet the requirements as set forth in Section 3.1801 (a).

(c) Occasional isolated commercial buildings, and industrial structures where such do not create congestion and whose design has been approved by the Planning Commission.

"c. SECTION 3.1900 REGULATIONS FOR "FP-3" DISTRICTS
This district classification is intended to be applied to properties which lie within a flood zone, but which have been protected by man-made dikes or levees constructed by local, State, or Federal agencies solely for the protection of the area so zoned.

The following regulations shall apply in all "FP-3" Districts, and shall be subject to the provisions of Chapters 4 and 5 of this Ordinance.
3.1901 Uses Permitted
(a) All uses permitted in the various zoning classifications which may be applied thereto."

The limits of the three flood plain zones are delineated on Exhibit C, entitled "Flood Plain Zoning at Mouth of Klamath River." Exhibit D, entitled "Reference Elevations for Flood Plain Zones" shows the location and elevation of monuments from Corps of Engineers and California Division of Highways surveys. These monuments will be of assistance in checking compliance with elevation requirements of the flood plain regulations.

COMBATTING FLOOD CONDITIONS

17. SUGGESTED METHODS

As previously stated, the project provides standard flood protection, and normally no flood problems should be experienced. However, floods of unanticipated magnitude might conceivably occur, and hence it is considered prudent to include a discussion of methods used to combat flood conditions. Most of the methods described herein have been developed during years of experience with the various problems that often come up during periods of high water. They are not intended to restrict the Superintendent, or others concerned, to a rigid set of rules for every condition that may arise, but are set forth only as guides. If problems not covered by these suggestions arise and the Superintendent is in doubt as to the procedure to be taken, he will be expected to consult the District Engineer, U.S. Army Engineer District, Corps of Engineers, San Francisco, California, and follow standard engineering practices in meeting the situation. It should be noted that it is much better to be overprepared for a "flood fight" than to find at the last moment that preparations were incomplete or unsatisfactory. Confidence of the protected persons and firms is a valuable asset that should not be carelessly lost through inefficient operation of the protection system in time of emergency.

a. Security. Personnel of the Corps of Engineers, U.S. Army, whether military or civilian, are not vested with any civil police authority in the performance of their engineering duties, and they will not attempt to exercise any such authority. The responsibility for protecting flood control works against sabotage, acts of depredation, or other unlawful acts rests with the local interests through local and State governmental agencies. In the event local law enforcement agencies prove inadequate, local interests can request the aid of State forces, and if additional support becomes necessary, Federal troops can be requested as provided by law.

b. Inspection of flood control works. Immediately upon receipt of information that a high water is imminent, the Superintendent should
form a skeleton organization capable of quick expansion and assign individuals (Sector Foremen) to have charge of definite sections of the project. As his initial activity, each Sector Foreman should go over his entire sector and parts of adjacent sectors, making a detailed inspection, particularly with reference to the following matters:

(1) Sector limits ascertain that the dividing line between sectors is plainly determined and, if necessary, marked.

(2) Transportation facilities: roads and rail.

(3) Material supply: quantity, location and condition.

(4) Communications: locate and check all necessary telephone and two-way radio facilities in the sector.

c. Preliminary repair work. After the initial inspection has been made, each Sector Foreman should recruit a labor crew and provide it with tools such as shovels, axes, wheelbarrows, etc. In addition, bulldozers, scrapers, trucks, etc., should be located and made ready for use in case of emergency. Then immediate action should be taken to perform the following work:

(1) Repair and close all flapgates on culverts and see that they operate and are seated properly before they are covered with flood waters.

(2) Ascertain that all roads to and along the project are in a good state of repair. The Superintendent should contact the California Division of Highways concerning U.S. Highway 101 if the situation so dictates.

(3) Locate necessary tools and materials (sacks, sandbags, brush, lumber, lights, etc.) and distribute and store them at points where active maintenance is anticipated.

(4) Check and obtain repair of all telephone lines and radio communication equipment necessary for operation; obtain lists of all team forces, motorboats, motorcars, and truck transportation that can be made available.

(5) Make thorough arrangements with reliable citizens of the community for the supply, transportation, subsistence, and shelter for the necessary labor.

(6) Investigate all drainage ditches and open these drains when obstructions exist.

d. Disaster relief. It is the responsibility of local, State and municipal authorities supported by and/or working in connection with the American Red Cross to adopt measures for the relief of flood disaster
victims. Relief measures can be undertaken by the Department of the Army through its Army Area Commander under existing Army Regulations, but such measures will be undertaken only as a last resort, in extreme cases and under compelling circumstances where local resources are clearly inadequate to cope with the situation.

e. Checklist. The inspection list in Exhibit F is furnished for reproduction and use by the local interests as a checklist for inspections and, also, for use in making the required semi-annual reports. This list should be used in each inspection to ensure that no feature of the protective system is overlooked. Items requiring repairs should be noted thereon; if items are satisfactory, they should be indicated as such.

f. Flood fight. After the above preliminary organization and precautions have been completed, the "flood fight" itself commences. The methods of combating flood high water levels as described in the following paragraphs have been proven effective during many years of use by the Department of the Army.

(1) Sack topping. Sack topping may be used to raise the elevation of grade about three feet. The sacks should generally be laid stretcherwise for the first layer, crosswise for the second layer, and so on. Sacks should be lapped at least one-fourth either way and well mauld into place. When properly sacked and tamped, one sack will give about three to four inches of topping (see Exhibit G, Plate 4).

(2) Lumber and sack topping. This is the most commonly used method of raising low reaches in emergencies. In putting on this topping, as well as other topping, a careful line of levels should be run and grade stakes set in advance. Two-inch by 4-inch by 6-foot long stakes should then be driven six feet apart, and 1-inch by 12-inch boards nailed to the landside of the stakes. This wall, backed with a single tier of sacks, will hold out at least one foot of water. If an additional foot is necessary, the layers of sacks will have to be increased in number and reinforced. In extreme cases, the stakes should be driven three feet into the ground and a 3-foot topping properly braced with sacks and earth should be utilized. In some instances, it may be practicable to back up the planking with tamped earth obtained in the vicinity, in lieu of the sacks down in the drawing (see Exhibit G, Plate 5).

g. Liaison with District Engineer and use of Government plant. During periods of emergency, close liaison will be maintained with the Corps of Engineers, whose objective of maintaining the integrity of the flood control works will be attained by supporting local interests in their efforts or by assuming full charge of the flood fight when the problem is beyond the capacities of local interests. The District Engineer, U.S. Army Engineer District, San Francisco, is authorized to use or loan Government property and plant in cases of emergency where life is in danger and there is no opportunity to secure prior authority for such use. The authority also extends to saving of property where no suitable private equipment is available, provided that such use is without detriment to the Government.
h. **Flood Emergency Manual.** The most recent "Flood Emergency Manual" published by the U.S. Army Engineer District, San Francisco, should be used to supplement the information furnished in this Operation and Maintenance Manual.
Part 208—Flood Control Regulations

Sec. 208.10 Local flood protection works; maintenance and operation of structures and facilities.

(a) General. (1) The structures and facilities constructed by the United States for local flood protection shall be continuously maintained in such a manner as to operate at such times and for such periods as may be necessary to obtain the maximum benefits.

(2) The State, political subdivision thereof, or other responsible local agency, which furnished assurance that it will maintain and operate flood control works in accordance with regulations prescribed by the Secretary of the Army, as required by law, shall appoint a permanent committee consisting of local officials responsible for flood control operations and maintenance of all of the structures and facilities during flood periods and for continuous inspection and maintenance of the project works during periods of low water, all without cost to the United States.

(b) Reserves. (1) A reserve supply of materials needed during a flood emergency shall be kept on hand at all times.

(2) The operation or maintenance of the project works shall be permitted upon the right-of-way for the protective facilities.

(3) No improvement or alteration shall be made in any feature of the works without prior determination by the District Engineer of the Department of the Army, or his authorized representative, that such improvement, excavation, construction, or alteration will not adversely affect the function of the protective facilities. Such improvements or alterations as may be found to be desirable and permissible under the above determination shall be constructed in accordance with standard engineering practice.

(4) Drawings or prints showing such improvements or alterations as finally constructed shall be furnished to the District Engineer after completion of the work.

(b) Maintenance of Flood Protection Works. (1) The District Engineer shall be the duty of the Superintendent to submit an annual report to the District Engineer covering inspection, maintenance, and operation of the protective works.

(2) The District Engineer or his authorized representatives shall have access at all times to all portions of the protective works.

(3) Maintenance measures or repairs which the District Engineer deems necessary shall be promptly taken or made.

(4) Appropriate measures shall be taken by local authorities to ensure that the local organization operating public or private facilities connected with the protective works are coordinated with those of the Superintendent during flood periods.

(5) The Department of the Army will furnish local interests with an Operation and Maintenance Manual for each completed project, or separate useful part thereof, to assist them in carrying out their obligations under this part.

(b) Levees. (1) Maintenance. The Superintendent shall provide at all times such maintenance as may be required to insure the safety of the levees in time of flood. Measures shall be taken to promote the growth of sod, exterminate burrowing animals, and to provide food for cattle, grass and weeds, removal of wild grass and drift deposits, and repair of damage caused by erosion or other forces. Where practicable and feasible, the levee shall be taken to retard bank erosion by planting of willows or other suitable growth on areas riverward of the levee. Periodic inspections shall be made by the Superintendent to insure that the above maintenance measures are being effectively carried out and further, to be certain of:

(I) No unusual settlement, sloughing, or material flow of grade or levee cross section has taken place;

(II) No caving has occurred on either the land side or the river side of the levee which might affect the stability of the levee section;

(IV) No seepage, saturated areas, or sand boils are occurring;

(V) Toe drainage systems and pressure relief wells are in good working condition and that such facilities are not becoming clogged;

(VI) Drains through the levees and gates on said drains are in good working condition;

(VII) All revetment work or riprap has been displaced, washed out, or removed;

(VIII) No action is being taken, such as burning grass and weeds during inappropriate seasons, which will retard or destroy the growth of sod;

(VIII) Access roads to and on the levee are being properly maintained;

(IX) Cattle guards and gates are in good condition;

(X) Crown of levee is shaped so as to drain water from the levee thereon, if any, is well shaped and maintained;

(xi) There is no unauthorized grazing or vehicular traffic on the levees;

(III) Encroachments are not being made on the levee right-of-way which might endanger the levee structure or hinder its proper and efficient functioning during times of emergency.

Such inspections shall be made immediately prior to the beginning of the flood season, immediately following each major high water period, and otherwise at intervals not exceeding 90 days. Measures to eliminate encroachments and effect repairs found necessary by such inspections shall be undertaken immediately. All repairs shall be accomplished by methods acceptable in standard engineering practice.

(2) Operations. Continuous patrol of the wall shall be maintained during flood periods to locate possible leakage at monolith joints or seepage underneath the wall. Floating plant or boats will not be allowed to proceed or to tie up to the wall. Should it become necessary during a flood emergency to pass anchor cables over the wall, adequate measures shall be taken to prevent concrete and construction joints. Immediate steps shall be taken to correct any condition which endangers the stability of the wall.

(c) Drainage Structures. (1) Maintenance. Adequate measures shall be taken to insure that inlet and outlet channels...
are kept open and that trash, drif, or debris is not allowed to accumulate near drainage structures. Flap gates and manually operated gates and valves on drainage structures shall be examined, oiled, and trial operated at least once every 90 days. Structures are provided with stop log or other emergency closures, the condition of the equipment and its housing shall be inspected regularly and a trial installation of the emergency closure shall be made at least once each year. Periodic inspections shall be made by the Superintendent to be certain that:

(i) Pipes, gates, operating mechanisms, riprap, and headwalls are in good condition;
(ii) Inlet and outlet channels are open;
(iii) Care is being exercised to prevent the accumulation of trash and debris near the structures and that no fires are being built near luminous coated pipes;
(iv) Erosion is not occurring adjacent to the structure which might endanger its water tightness or stability.

Immediate steps will be taken to repair damage, replace missing or broken parts, or replace any conditions disclosed by such inspections.

(2) Operation. Whenever high water conditions impend, all gates will be inspected a short time before water reaches the invert of the pipe and any object which might prevent closure of the gate shall be removed. Automatic gates shall be closely observed until it has been ascertained that they will be securely closed. Manually operated gates and valves shall be closed as necessary to prevent inflow of floodwater. All drainage structures in excess of 90 days during flood seasons shall be inspected at least once every 90 days. Inspections shall be made whenever it has been determined that undue leakage is occurring and that drains provided to care for ordinary leakage are functioning properly. Boats or floating plant shall be brought to the top to closure structures or to discharge passengers or cargo over them.

(i) Pumping plants—(1) Maintenance. Pumping plants shall be inspected by the Superintendent at intervals not to exceed 90 days during flood seasons and 90 days during off-flood seasons to insure that all equipment is in order for immediate use. At regular intervals, proper measures shall be taken to provide for cleaning plant, buildings, and equipment, repainting as necessary, and lubricating all machinery. Adequate supplies of lubricants for all machines, fuel for gasoline or diesel powered equipment, and flash lights or lanterns for emergency lighting shall be kept on hand at all times. Telephone lines are maintained at pumping plants. All equipment, including switch gear, transformers, motors, pumps, valves, and gates shall be inspected and selected at least once every 90 days. Mergers tests of all insulation shall be made whenever wiring has been subjected to undue damage and other conditions not to exceed one year. A record shall be kept showing the results of such tests. Wiring disclosed to be in an unsatisfactory condition by such tests shall be brought to a satisfactory condition or shall be promptly replaced. Diesel and gasoline engines shall be started at such intervals and allowed to run for such length of time as may be necessary to insure their serviceability in times of emergency. Only skilled electricians and mechanics shall be employed on tests and repairs. Operators for the plant shall be present during tests. Any equipment removed from the station for repair or replacement shall be returned to repair shop and shall be trial operated after reinstallation. Repairs requiring removal of equipment from the plant shall be made during off-flood seasons if possible or practicable.

(ii) Operation. Competent operators shall be on duty at pumping plants whenever it appears that necessity for pump operation exists. The operator shall thoroughly inspect, trial operate, and place in readiness all plant equipment. The operator shall be familiar with the general arrangement, the instructions and drawings and with the "Operating Instructions" for each station. The equipment shall be operated in accordance with the said instructions. "Operating Instructions" and care shall be exercised that proper lubrication is being supplied all equipment, and that no overheating, undue vibration or leaks is occurring. Where water is being discharged a final reconnection of flood waters, the pumping station shall be thoroughly cleaned, pump house sumps flushed, and equipment thoroughly inspected and cleaned. A record of pumping plant operations shall be kept as follows: a copy or which shall be furnished the District Engineer following each flood.

(g) Channels and floodways—(1) Maintenance. Periodic inspections of improved channels and floodways shall be made by the Superintendent to be certain that:

(i) The channel or floodway is clear of debris, weeds, and wild growth;
(ii) The channel or floodway is not being obstructed by the depositing of waste materials, brush, brush piles, or other obstructions;
(iii) The capacity of the channel or floodway is not being reduced by the formation of boils;
(iv) Banks are not being damaged by rain, wave, or wash, and that no sloughing of banks has occurred;
(v) Riprap sections and deflection dikes and walls are in good condition;
(vi) Approach and egress channels adjacent to the improved channel or floodway are not being obstructed by brush piles or other obstructions.

Such inspections shall be made prior to the beginning of the flood season and at other times not to exceed 90 days. Immediate steps will be taken to remove any adverse conditions disclosed by such inspection. All inspection and maintenance shall be taken by the Superintendent to promote the growth of grass on bank slopes and earth deflection dikes. The Superintendent shall provide for the cleaning of debris basins, check dams, and related structures as necessary.

(2) Operation. Both banks of the channel shall be patrolled during periods of high water, and measures shall be taken to protect those reaches being attacked by the current or by wave wash. Adequate revetments shall be constructed to prevent the formation of jams of ice or debris. Large objects which become lodged against the bank shall be removed. The improved channel or obstruction shall be thoroughly inspected and operating following each major high water period. As soon as practicable thereafter, the channel shall be removed and all damage to banks, riprap, deflection dikes and walls, drainage outlets, or other flood control structures repaired.

(b) Miscellaneous facilities—(1) Maintenance. Miscellaneous structures and facilities constructed as a part of the protective works shall be regularly inspected and facilities which function as a part of, or affect the efficient functioning of the protective works, shall be periodically inspected by the Superintendent of appropriate maintenance measures taken. Damaged or unserviceable parts shall be repaired or replaced without delay. Areas protected by ordinary means and by pumping plants for temporary storage of interior run-off during flood periods shall not be allowed to be flooded, until filled, provided with suitable material. The Superintendent shall take proper steps to prevent obstruction of bridge openings and, where practicable, shall provide for temporary raising during floods of bridges which restrict channel capacities during high flows.

(2) Operation. Miscellaneous facilities shall be constructed to prevent or reduce the effects of high water. Those facilities constructed as a part of the protective works shall not be used for purposes other than flood protection unless the Superintendent of District Engineer until designed therefor. (Sec. 3, 38 Stat. 1971, as amended; 38 U.S.C. 7101) [38 F.R. 19099, 19099]
RESOLUTION OF COOPERATION OF COUNTY OF DEL NORTE WITH THE UNITED STATES GOVERNMENT IN FLOOD CONTROL PROJECT ON LOWER KLAMATH RIVER AND RESCINDING COUNTY RESOLUTION 65-80.

WHEREAS, the District Engineer, San Francisco District, U.S. Army Corps of Engineers, is now preparing a survey report which will give consideration to adoption of a project for flood control on the lower Klamath River in the County of Del Norte, State of California, and

WHEREAS, it is understood the District Engineer's report will recommend construction of levees together with necessary interior drainage structures and facilities for protection of flood-free areas at Klamath and Klamath Glen, and contribute to the cost of the necessary flowage easements to assure proper management of remaining flood plain, and

WHEREAS, it is estimated that the cost of the aforesaid project will be about $4,100,000, of which $440,000 will be local non-Federal costs for land easements and rights-of-way, together with an estimated annual cost of $16,000 for maintenance and operation of the proposed improvements, and

WHEREAS, County Resolution 65-80 as adopted by this Board of Supervisors does not agree completely with H.D. 478,

NOW, THEREFORE, BE IT RESOLVED by the Board of Supervisors of the County of Del Norte, State of California, that County Resolution 65-80 is rescinded.
FURTHER RESOLVED that in the event the United States Government adopts and authorizes the proposed plan of improvement, it is the declaration of this Board to cooperate with the U.S. Army Corps of Engineers in the accomplishment of the aforesaid project as follows:

a. Provide without cost to the United States all lands, easements, and rights-of-way necessary for construction and functioning of the project;

b. Hold and save the United States free from damages due to the construction works;

c. Maintain and operate all the works after completion in accordance with regulations prescribed by the Secretary of the Army, and manage the historical flood plain within the eight-and-one-half mile reach above the mouth of the Klamath River in accordance with Paragraph "f" below;

d. Adjust all claims regarding water rights arising from construction of the project;

e. Make any alterations to existing improvements which may be required because of the project; and

f. Prevent any encroachment on the constructed works, ponding areas, and flood plain management areas which might interfere with the proper functioning of the project, lessen its beneficial effects, or reduce its design capacity; and, if ponding or flood plain management is impaired, provide promptly without cost to the United States substitute storage or equivalent pumping capacity and such flood-control works as required to protect the management areas.
g. The County of Del Norte will annually notify local interests of the degree of protection which will be provided by the project.

PASSED AND ADOPTED by the Board of Supervisors of the County of Del Norte the 24th day of April, 1967, by the following vote:

AYES: Supervisors McNamara, Mellon, Knight, Del Ponte, Chairman McClendon.

NOES: None

ABSENT: None

/s/ Bernard McClendon
Chairman, Board of Supervisors

ATTEST:

/s/ Dorothy Sinclair (SEAL)
County Clerk

The foregoing is a correct copy of the original on file in this office.

Dated: April 24, 1967

ATTEST:

DOROTHY SINCLAIR
County Clerk and ex-officio Clerk of the Board of Supervisors, County of Del Norte, State of California.

By Virginia Ferguson
Deputy
RESOLUTION NO. 68-11

RESOLUTION OF THE BOARD OF SUPERVISORS OF THE COUNTY OF DEL NORTE
STATE OF CALIFORNIA

WHEREAS, the Flood Control Act of 1966 (Public Law 99-789, approved November 7, 1966) authorized a Federal project for flood protection on the Klamath River substantially in accordance with the recommendations of the Chief of Engineers in House Document No. 478, 89th Congress, 2d Session; and

WHEREAS, by Resolution No. 67-43 dated April 24, 1967, this Board agreed to provide the required local cooperation as set forth therein in connection with the project for flood control at Klamath and Klamath Glen, and

WHEREAS, the present proposed plans of the Government for that portion of the project at Klamath would provide for filling approximately 40 acres adjacent and contiguous to the highway embankment being constructed by the State on Highway 101 in the vicinity of Klamath in lieu of the levee work proposed in the House Document.

NOW, THEREFORE, BE IT RESOLVED that this Board affirms and agrees to provide the local cooperation set forth in Resolution No. 67-43 in connection with the present proposed project at Klamath and be it further resolved that WILLIAM W. SPEER, County Counsel, and/or LEVERNE M. NELSON, County Road Commissioner, be, and each of them is hereby authorized to certify to the Army Corps of Engineers on behalf of this Board that it has obtained all lands, easements, and rights-of-way necessary for the performance of the proposed work at Klamath.
PASSED AND ADOPTED by the Board of Supervisors of the
County of Del Norte the 13th day of February, 1968, by the fol-
lowing vote:
AYES: Supervisors McNamara, Mellon, Right, Del Ponte, Chairman
McClendon.
NOES: None.
ABSENT: None.

Bernard McClendon
CHAIRMAN OF THE BOARD

ATTEST:

Dorothy Sinclair (SEAL)
CLERK OF THE BOARD

The foregoing is a correct copy of
the original on file in this office.
Dated: February 13, 1968
ATTEST:

DOROTHY SINCLAIR
County Clerk and ex-officio Clerk of the Board of Supervisors, County of
Del Norte, State of California.

By

Deputy

EXHIBIT B SHEET 5 of 6
April 16, 1968

Colonel F.C. Boerger
U.S. Army Engineers District
100 McAllister Street
San Francisco, California 94102

SUBJECT: Klamath Townsite Relocation, Del Norte County, California.

Dear Colonel Boerger:

This is to inform your staff that all lands, easements, and rights of way for the proposed Klamath townsite are available for construction purposes.

The county has also secured a dredging permit from the State Lands Commission for the excavation of up to 1,200,000 cubic yards of earthen materials from Taylor Island on the south bank of the Klamath River.

This should provide you with the necessary right of way clearance and fill material to develop the townsite.

We sincerely hope you will make every effort to accomplish the townsite fill this calendar year.

Sincerely yours,

LaVerne M. Nelson
Road Commissioner & County Engineer

Enclosures: 1

CC: Board of Supervisors, Del Norte County
Klamath Community Services District

LMN: rs
SEMI-ANNUAL REPORT

FOR

INSPECTION, MAINTENANCE AND OPERATION OF

KLAMATH PORTION

OF

KLAMATH RIVER AT AND IN THE VICINITY OF KLAMATH, CALIFORNIA

FLOOD CONTROL PROJECT

DEL NORTE COUNTY, CALIFORNIA

Period from _______________ Submitted by _______________

to _______________ Date _______________

INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>ITEM:</th>
<th>FEATURE</th>
<th>LOCATION AND EXTENT OF MAINTENANCE REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Riprap condition</td>
<td>:</td>
</tr>
<tr>
<td>2</td>
<td>Drainage ditches condition</td>
<td>:</td>
</tr>
<tr>
<td>3</td>
<td>Drainage culverts condition</td>
<td>:</td>
</tr>
<tr>
<td>4</td>
<td>Weeds or undesirable vegetation</td>
<td>:</td>
</tr>
<tr>
<td>5</td>
<td>Accumulations of drift, trash or debris</td>
<td>:</td>
</tr>
<tr>
<td>6</td>
<td>Unauthorized excavation and loose backfill</td>
<td>:</td>
</tr>
<tr>
<td>7</td>
<td>Unauthorized encroachment on rights-of-way</td>
<td>:</td>
</tr>
<tr>
<td>8</td>
<td>Gravity drainage system:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>a. Relief wells</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>b. Outlet culvert</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>c. Slidegate</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>d. Flapgate</td>
<td>:</td>
</tr>
<tr>
<td>ITEM:</td>
<td>FEATURE</td>
<td>LOCATION AND EXTENT OF MAINTENANCE REQUIRED</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>Mechanical drainage system:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Engines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Pumps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Engine controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Batteries and electrical equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Other maintenance</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Non-compliance with flood plain usage regulations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Zone FP-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Zone FP-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Zone FP-3</td>
<td></td>
</tr>
</tbody>
</table>
MAINTENANCE CHECKLIST

SEE MANUFACTURERS LITERATURE FOR PROPER MAINTENANCE PROCEDURES

(HOURS MEANS SERVICE HOURS)

<table>
<thead>
<tr>
<th>Gravity Drainage System</th>
<th>AS NEEDED</th>
<th>FREQUENTLY DURING OPERATION</th>
<th>10 HOURS OR DAILY</th>
<th>AFTER EACH STORM</th>
<th>50 HOURS OR WEEKLY</th>
<th>250 HOURS OR MONTHLY</th>
<th>500 HOURS OR QUARTERLY</th>
<th>1000 HOURS OR SEMI-ANNUALLY</th>
<th>2000 HOURS OR ANNUALLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check for free movement of flaps</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check for debris in ditches</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check for debris in inlet structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check for debris in outlet pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check for debris that would prevent closing slide gate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check operation of slide gate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricate gate lift</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check relief wells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check power wrench</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Drainage System

Pumps

- Check lubricator oil level | X | X | X | | | | | |
- Check oil drip rate | | | | | X | | | | |
- Remove debris from pump bell | | | | | | | | | |

Right Angle Gear Drive

- Check oil level | X | | X | | | | | |
- Change oil | | | | | | | | |
- Drive Shaft | X | | | | | | | |

Engine

- Start, run and stop (disconnect drive shaft as needed) | | | | | | | | X | |
- Check crankcase oil pressure | X | | | | | | | | |
- Check crankcase oil level | | | | | | | | | |
- Check crankcase and change oil & filters | X | | | | | | | | |
- Check fuel pressure gauge | X | X | X | | | | | | |
- Check fuel level | | | | | | | | | |
- Check fuel tank - drain water and sediment | | | | | | | | | |
- Check fuel priming pump and priming fuel system | X | | | | | | | | |
- Clean primary fuel filter element | X | | | | | | | | |
- Replace final fuel filter element | X | | | | | | | | |
- Check day tank | | | | | | | | | |
- Drain fuel tank and replace fuel | | X | | | | | | | |
- Check anti-freeze - reading | | | | | | | | X | |
- Drain and replace anti-freeze | | | | | | | | | |
- Check cooling water temperature | X | | | | | | | | |
- Check cooling water level | X | | | | | | | | |
<table>
<thead>
<tr>
<th></th>
<th>AS NEEDED</th>
<th>FREQUENTLY DURING OPERATION</th>
<th>10 HOURS OR DAILY</th>
<th>AFTER EACH STORM</th>
<th>50 HOURS OR WEEKLY</th>
<th>250 HOURS OR MONTHLY</th>
<th>500 HOURS OR QUARTERLY</th>
<th>1000 HOURS OR SEMI-ANNUALLY</th>
<th>2000 HOURS OR ANNUALLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine (continuation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator fan belt - check wear and adjust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator fan belt - lubricate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine jacket water system - check for leaks</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check battery charging rate</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check battery fluid level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternator belt - inspect and adjust</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries - check installation and general condition</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean crankcase breather</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Air cleaner service indicator - check and service</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty two stage air cleaner dust cup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air cleaner element - install replacement element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Air cleaner - install new filter element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Single stage air cleaner - install replacement element</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two stage air cleaner - install replacement element</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean used air filter elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service air cleaner pre-cleaner</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service tachometer drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety shut-off control - check operation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake and exhaust valves - check adjustment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake and exhaust valves - adjust</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve rotators - check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Float switches - check for binding in well</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trashrack - removed debris</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge pipes - inspect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
NOTE:

BOTTOM WIDTH TO BE NO LESS THAN 1 1/2 TIMES HEIGHT.
BE SURE TO CLEAR SAND DISCHARGE.
TIE INTO LEVEE IF BOIL IS NEAR TOE.

SECTION A-A

NOTE:

DO NOT SACK BOIL WHICH DOES NOT PUT OUT MATERIAL.
HEIGHT OF SACK LOOP OR RING SHOULD BE ONLY SUFFICIENT TO CREATE ENOUGH HEAD TO SLOW DOWN FLOW THROUGH BOIL SO THAT NO MORE MATERIAL IS DISPLACED AND BOIL RUNS CLEAR.
NEVER ATTEMPT TO COMPLETELY STOP FLOW THROUGH BOIL.

SUGGESTED METHODS OF EMERGENCY PROTECTION
CONTROL OF SAND BOILS

U.S. ARMY ENGINEER DIST., SAN FRANCISCO, C OF E
DRAWN:
TRACED:
CHECKED:
DATED JUNE 1972 99-20-274
Bill of Material For 100 Feet

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMBER</td>
<td></td>
</tr>
<tr>
<td>1" x 12" x 12'-0"</td>
<td>56</td>
</tr>
<tr>
<td>1" x 4" x 2'-6"</td>
<td>32</td>
</tr>
<tr>
<td>2" x 4" x 9'-0"</td>
<td>32</td>
</tr>
<tr>
<td>* 2" x 4" x 2'-0"</td>
<td>32</td>
</tr>
<tr>
<td>* (Sharpened)</td>
<td></td>
</tr>
<tr>
<td>WIRE</td>
<td></td>
</tr>
<tr>
<td>200' Baling Wire</td>
<td></td>
</tr>
<tr>
<td>NAILS</td>
<td>4 1/2 lbs - 8d Nails</td>
</tr>
</tbody>
</table>
RIVERSIDE EDGE OF LEVEE CROWN

SANDBAGS

VARIABLE LENGTHS

AS REQUIRED

ALLOW APPROXIMATELY 1' LAP
FOR EACH PLASTIC SHEET

RIVERSIDE TOE OF LEVEE

PLAN

RIVERSIDE

Variable Lengths
Plastic Sheets

Landside

Water Surface

EXISTING LEVEE

SECTION

NOTE:

LAY LENGTHS AS REQUIRED OF PLASTIC SHEETS
APPROXIMATELY PARALLEL WITH LEVEE SLOPE
AND ACROSS DAMAGED SECTION. WEIGHT TOP
AND EDGES OF PLASTIC SHEETS WITH FILLED
SANDBAGS AS SHOWN ABOVE.

MATERIAL REQUIRED FOR 100
LINEAR FEET OF LEVEE

SANDBAGS

120 Sandbags and Plastic Sheets
as Required
(Polyethylene 6Mil Thickness)

SUGGESTED METHODS
OF EMERGENCY PROTECTION
MOVABLE
WAVE WASH PROTECTION

U.S. ARMY ENGINEER DIST., SAN FRANCISCO, C OF E
DRAWN:
TRACED:
CHECKED:
DATED JUNE 1972 99-20-274

EXHIBIT G PLATE 3
NOTE:

1. ENTIRE BASE TO BE CLEARED AND SCARIFIED.

2. BEST MATERIAL FOR FILLING SANDBAGS IS A FINE SAND OF COURSE SILT. AVOID, AS MUCH AS POSSIBLE, THE USE OF COURSE GRAVEL AND HEAVY CLAY.

3. FILL SANDBAGS 1/2 TO 2/3 FULL, 50 TO 60 POUNDS, AND LEAVE ENOUGH FLAP TO TURN UNDER. DO NOT TIE.

4. NUMBERS SHOWN ON THE SANDBAGS ARE FOR THE GENERAL ORDER OF PLACING THE SANDBAGS TO GIVE THE HIGHEST PROTECTION WITH THE MINIMUM NUMBER OF SANDBAGS.

5. WHEN BAGS ARE PLACED, FLATTEN OUT AND FILL VOIDS BY MASHING BAGS WITH FEET AND VIGOROUSLY TRAMPING EACH COURSE OF THE LEVEE SECTION. PROVIDE A LEVEE SECTION AS IMPERVIOUS TO WATER AS POSSIBLE. ALTERNATE DIRECTION OF SACKS AND STAGGER JOINTS WHEREVER PRACTICAL.

6. THE ABOVE SECTION IS BASED UPON AN AVERAGE IN PLACE SANDBAG SECTION OF 4" X 12" X 18".

SUGGESTED METHODS OF EMERGENCY PROTECTION SACK TOPPING
BILL OF MATERIAL FOR 100 LINEAR FEET OF LEVEE

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 pieces</td>
<td>1" x 12" x 12' - 0"</td>
<td></td>
</tr>
<tr>
<td>17 pieces</td>
<td>2" x 4" x 10' - 0"</td>
<td></td>
</tr>
<tr>
<td>17 pieces</td>
<td>2" x 4" x 6' - 0"</td>
<td></td>
</tr>
<tr>
<td>17 pieces</td>
<td>2" x 4" x 2' - 0"</td>
<td></td>
</tr>
<tr>
<td>(Sharpened)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 lb 8d nails</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 lb 16d nails</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANDBAGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100 bags</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUGGESTED METHODS OF EMERGENCY PROTECTION

LUMBER AND SACK TOPPING
LEGEND:

FL. — Flow Line
C. — Crossing

NOTE:
1. For typical Sections and Details
 See Sheet "A"

FLOOD PROTECTION
KLAMATH RIVER AT KLAMATH
PLAN AND PROFILE
SECTIONS STA. E54+00 TO STA. E65+00

[Map and diagram details]