STATE OF CALIFORNIA
Arnold Schwarzenegger, Governor

THE RESOURCES AGENCY
Mike Chrisman, Secretary for Resources
Department of Water Resources
Lester A. Snow
Director
Leslie F. Harder, Jr.
Acting Deputy Director
Stephen W. Verigin
Acting Chief Deputy Director
Gerald E. Johns
Deputy Director
Brian E. White
Assistant Director, Legislative Affairs
Nancy J. Saracino
Chief Counsel

Division of Flood Management
Rod Mayer
Acting Chief, Division of Flood Management
Maury Roos
Chief, Hydrology and Flood Operations
Arthur Hinojosa
Chief, Hydrology Branch

Prepared by
Frank Gehrke
Chief, Snow Surveys
Dave Rizzardo
Chief, Forecasting Section
John King
Engineer, W.R.
Boone Lek
Engineer, W.R.
Aaron Miller
Engineer, W.R.
Stephen Nemeth
Engineer, W.R.
Matt Winston
Senior Meteorologist, W.R.
David M. Hart
Water Resources Engineering Associate

SNOWPACK - Snow data is a major index of spring and summer runoff from Sierra Nevada watersheds. April 1 data historically reflects the magnitude of the snowpack at or near the maximum seasonal accumulation. Averages are based on April 1 data for the period 1951-2000 (50 years, except for data sites established after 1951).

PRECIPITATION - Averages are based on April 1 data for the period 1951-2000 (50 years, except for data sites established after 1951).

RUNOFF AND FORECASTS - Runoff data and runoff forecasts are shown as unimpaired values. Unimpaired runoff represents the natural water production of a river basin, unaltered by upstream diversions, storage, or by export or import of water to or from other watersheds. Forecast of runoff assumes median conditions subsequent to the date of forecast.

Runoff probability ranges are statistically derived from historical data. The 80 percent probability range is comprised of the 90 percent exceedence level value and the 10 percent exceedence level value. This means that actual runoff should fall within the stated limits eight times out of ten.

Runoff averages for most streams are based on the period 1951-2000.

Reservoir storage averages are based on the period from 1951 (or beginning of operation) to 2000.

For more details contact California Cooperative Snow Surveys, P.O. Box 219000, Sacramento, CA 95821-9000, (916) 574-2535 or gridley@water.ca.gov.

INDICES OF WATER AVAILABILITY

The Sacramento River water year unimpaired runoff is the sum of: Sacramento River above Bend Bridge, Feather River Inflow to Lake Oroville, Yuba River near Smartville and American River Inflow to Folsom Lake.

The Sacramento Valley Water Year Hydrologic Classification (40-30-30 Index). The values 40-30-30 represent the percentage weight given to the three variables in the formula for the Index. The first variable is the forecasted unimpaired runoff from April through July (40 percent). The second variable is the expected unimpaired runoff from October through March (30 Percent). The third variable is the previous year’s index with a cap-to account for required flood control releases during wet years. The basins used in this computation are those used in the Sacramento River water year unimpaired runoff.

The San Joaquin River Valley Water Year Hydrologic Classification (60-20-20 Index). In a similar manner the values 60-20-20 represents the percentage weights on April through July runoff, October through March runoff and previous year’s Index. The San Joaquin River unimpaired runoff is the sum of: Stanislaus River Inflow to New Melones Lake, Tuolumne River Inflow to New Don Pedro Reservoir, Merced River Inflow to Lake McClure and San Joaquin River Inflow to Millerton Lake.

Runoff of the eight major rivers of the Sacramento and San Joaquin Regions is the sum of the runoff in the eight major rivers used in the two above indices.
SUMMARY OF WATER CONDITIONS
April 1, 2006

It was the wettest March since 1995 in most of California, with much below normal temperatures and a big boost to the snowpack during the month. A series of storms from a northwesterly direction out of the Gulf of Alaska brought rain and snow almost daily and set some new records for the number of days with precipitation. Very wet conditions are continuing into April. The water supply improved from last month with excellent prospects for most users but now there are concerns about too much runoff in many Central Valley rivers depending on how the snowmelt ensues.

Forecasts of April through July runoff are 130 percent of average statewide, ranging from 145 percent on the North Coast to about 125 percent in the Sacramento River region. Water year forecasts are slightly higher at 140 percent, well above average except in the south.

Snowpack water content gained about 40 percent during March, nearly triple the normal gain, and is now 125 percent of average compared to 135 percent last year. It ranges from 110 in the Sacramento River region to 145 percent in South Lahontan regions. The continuing series of mountain snowstorms has made snow data collections difficult this past month.

Precipitation from October through March was about 130 percent of average compared to 140 percent one year ago. The range is from 55 percent in southern California regions to 155 percent in the San Francisco Bay region. March precipitation was 180 percent of average.

Runoff has been about 155 percent of average so far this season boosted by large percentages in the northern half of the State. Runoff in the southern regions has been much less, matching the precipitation patterns. Estimated runoff of the eight major rivers of the Sacramento and San Joaquin River regions during March was 5.3 million acre-feet.

Reservoir storage continues excellent at about 115 percent of average compared to 105 percent last year. Most large reservoirs are about as full as they can be for this time of year in view of flood control considerations.

SUMMARY OF WATER CONDITIONS
IN PERCENT OF AVERAGE

<table>
<thead>
<tr>
<th>HYDROLOGIC REGION</th>
<th>PRECIPITATION OCTOBER 1 TO DATE</th>
<th>APRIL 1 SNOW WATER CONTENT</th>
<th>APRIL 1 RESERVOIR STORAGE</th>
<th>RUNOFF OCTOBER 1 TO DATE</th>
<th>APR-JULY RUNOFF FORECAST</th>
<th>WATER YEAR RUNOFF FORECAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH COAST</td>
<td>150</td>
<td>140</td>
<td>105</td>
<td>165</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>SAN FRANCISCO BAY</td>
<td>155</td>
<td>--</td>
<td>115</td>
<td>160</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CENTRAL COAST</td>
<td>110</td>
<td>--</td>
<td>130</td>
<td>85</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SOUTH COAST</td>
<td>60</td>
<td>--</td>
<td>100</td>
<td>80</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SACRAMENTO RIVER</td>
<td>145</td>
<td>110</td>
<td>110</td>
<td>155</td>
<td>125</td>
<td>145</td>
</tr>
<tr>
<td>SAN JOAQUIN RIVER</td>
<td>125</td>
<td>135</td>
<td>125</td>
<td>150</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>TULARE LAKE</td>
<td>110</td>
<td>135</td>
<td>145</td>
<td>105</td>
<td>130</td>
<td>120</td>
</tr>
<tr>
<td>NORTH LAHONTAN</td>
<td>140</td>
<td>125</td>
<td>125</td>
<td>185</td>
<td>140</td>
<td>145</td>
</tr>
<tr>
<td>SOUTH LAHONTAN</td>
<td>100</td>
<td>145</td>
<td>115</td>
<td>95</td>
<td>130</td>
<td>125</td>
</tr>
<tr>
<td>COLORADO RIVER-DEsert</td>
<td>55</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>STATEWIDE</td>
<td>130</td>
<td>125</td>
<td>115</td>
<td>155</td>
<td>130</td>
<td>140</td>
</tr>
</tbody>
</table>
DEPARTMENT OF WATER RESOURCES
CALIFORNIA COOPERATIVE SNOW SURVEYS
SEASONAL PRECIPITATION
IN PERCENT OF AVERAGE TO DATE
October 1, 2005 through March 31, 2006

Statewide = 130%

Hydrologic Regions
NC – North Coast
SF – San Francisco Bay
CC – Central Coast
SC – South Coast
SR – Sacramento River
SJ – San Joaquin
TL – Tulare Lake
NL – North Lahontan
SL – South Lahontan
CR – Colorado River–Desert

WATER YEAR IS OCTOBER 1 THROUGH SEPTEMBER 30
DEPARTMENT OF WATER RESOURCES
CALIFORNIA COOPERATIVE SNOW SURVEYS
FORECAST OF APRIL – JULY
UNIMPAIRED SNOWMELT RUNOFF
April 1, 2006

Legend
Runoff forecast in percent of normal
100%

SCOTT 123%
TRINITY 152%
YUBA 118%
AMERICAN 127%
COSUMNES 135%
MOKELUMNE 130%
STANISLAUS 136%
TUOLUMNE 131%
MERCED 131%
SAN JOAQUIN 135%
KINGS 137%
KAWEAH 124%
FEATHER 123%
TRUCKEE 121%
TAHOE 125%
CARSON 145%
WALKER 167%
MONO * 130%
OWENS * 130%
TULE 108%
KERN 117%
UPPER SACRAMENTO 136%

* FORECAST BY DEPARTMENT OF WATER AND POWER, CITY OF LOS ANGELES
SACRAMENTO RIVER

Upper Sacramento River
- Sacramento River at Delta above Shasta Lake (3) 299 711 39 430 144%
- McCloud River above Shasta Lake 400 850 185 580 145%
- Pit River near Montgomery Creek + Squaw Creek 1,090 2,098 480 1,360 125%
- Total Inflow to Shasta Lake 1,849 3,525 726 2,510 136% 2,110 - 3,160

Sacramento River above Bend Bridge, near Red Bluff 2,521 5,075 943 3,400 135% 2,880 - 4,400

Feather River
- Feather River at Lake Almanor near Pratville (3) 333 675 120 390 117%
- North Fork at Pulga (3) 1,028 2,416 243 1,240 121%
- Middle Fork near Clio (4) 86 518 4 110 128%
- South Fork at Ponderosa Dam (3) 110 267 13 140 127%
- Feather River at Oroville 1,870 4,676 392 2,300 123% 1,940 - 2,980

Yuba River
- North Yuba below Goodyears Bar (3) 286 647 51 340 119%
- Inflow to Jackson Mdw and Bowman Reservoirs (3) 112 236 25 130 116%
- South Yuba at Langs Crossing (3) 233 481 57 260 112%
- Yuba River near Smartville plus Deer Creek 1,044 2,424 200 1,230 118% 990 - 1,640

American River
- North Fork at North Fork Dam (3) 262 716 43 330 126%
- Middle Fork near Auburn (3) 522 1,406 100 680 130%
- Silver Creek Below Camino Diversion Dam (3) 173 386 37 220 127%
- American River below Folsom Lake 1,282 3,074 229 1,630 127% 1,400 - 2,100

SAN JOAQUIN RIVER

Cosumnes River at Michigan Bar 130 363 8 175 135% 135 - 245

Mokelumne River
- North Fork near West Point (5) 437 829 104 560 128%
- Total Inflow to Pardee Reservoir 469 1,065 102 610 130% 550 - 750

Stanislaus River
- Middle Fork below Beardsley Dam (3) 334 702 64 450 135%
- North Fork Inflow to McKays Point Dam (3) 224 503 34 310 138%
- Stanislaus River below Goodwin Reservoir (7) 716 1,710 116 970 136% 860 - 1,180

Tuolumne River
- Cherry Creek & Eleanor Creek near Hetch Hetchy (3) 322 727 97 420 130%
- Tuolumne River near Hetch Hetchy (3) 606 1,392 153 790 130%
- Tuolumne River below La Grange Reservoir (7) 1,230 2,682 301 1,610 131% 1,460 - 1,890

Merced River
- Merced River at Pohono Bridge (3) 362 888 80 480 133%
- Merced River below Merced Falls (7) 633 1,587 123 830 131% 760 - 1,010

San Joaquin River
- San Joaquin River at Mammoth Pool (6) 1,014 2,279 235 1,340 132%
- Big Creek below Huntington Lake (6) 95 264 11 130 137%
- South Fork near Florence Lake (6) 202 511 58 270 134%
- San Joaquin River inflow to Millerton Lake 1,262 3,355 262 1,700 135% 1,530 - 1,950

TULARE LAKE

Kings River
- North Fork Kings River near Cliff Camp (3) 239 565 50 330 138%
- Kings River below Pine Flat Reservoir 1,234 3,113 274 1,690 137% 1,510 - 1,890

Kaweah River below Terminus Reservoir 290 814 62 360 124% 325 - 440

Tule River below Lake Success 65 259 2 70 108% 61 - 95

Kern River
- Kern River near Kernville (3) 373 1,203 83 460 123%
- Kern River inflow to Lake Isabella 470 1,657 84 550 117% 520 - 670

(1) See inside back cover for definition
(2) All 50 year averages are based on years 1951-2000 unless otherwise noted
(3) 50 year average based on years 1941-90
(4) 44 year average based on years 1936-79
(5) 36 year average based on years 1936-72
(6) 45 year average based on years 1936-81
APRIL 1, 2006 FORECASTS
WATER YEAR UNIMPAIRED RUNOFF

Unimpaired Runoff in 1,000 Acre-Feet (1)

<table>
<thead>
<tr>
<th>HISTORICAL</th>
<th>DISTRIBUTION</th>
<th>FORECAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Yr Avg</td>
<td>Max of Record</td>
<td>Min of Record</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>888</td>
<td>1,965</td>
<td>165</td>
</tr>
<tr>
<td>1,234</td>
<td>2,353</td>
<td>557</td>
</tr>
<tr>
<td>2,417</td>
<td>4,400</td>
<td>666</td>
</tr>
<tr>
<td>219</td>
<td>637</td>
<td>24</td>
</tr>
<tr>
<td>318</td>
<td>705</td>
<td>59</td>
</tr>
<tr>
<td>409</td>
<td>1,253</td>
<td>20</td>
</tr>
<tr>
<td>461</td>
<td>1,147</td>
<td>123</td>
</tr>
<tr>
<td>1,337</td>
<td>2,964</td>
<td>308</td>
</tr>
<tr>
<td>112</td>
<td>298</td>
<td>14</td>
</tr>
<tr>
<td>284</td>
<td>607</td>
<td>58</td>
</tr>
<tr>
<td>460</td>
<td>1,402</td>
<td>94</td>
</tr>
<tr>
<td>558</td>
<td>1,577</td>
<td>163</td>
</tr>
</tbody>
</table>

* Unimpaired runoff in prior months based on measured flows

(7) Forecast point names based on USGS gage names. Stanislaus below Goodwin also known as inflow to New Melones, Tuolumne River below La Grange also known as inflow to Don Pedro, Merced River below Merced Falls also known as inflow to McClure.
APRIL 1, 2006 FORECASTS
APRIL-JULY UNIMPAIRED RUNOFF

<table>
<thead>
<tr>
<th>HYDROLOGIC REGION and Watershed</th>
<th>Apr-Jul Unimpaired Runoff in 1,000 Acre-Feet (1)</th>
<th>HISTORICAL</th>
<th>FORECAST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 Yr Avg</td>
<td>Max of Record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>### NORTH COAST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinity River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinity River at Lewiston Lake</td>
<td></td>
<td>660</td>
<td>1,593</td>
</tr>
<tr>
<td>Scott River</td>
<td></td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Klamath River</td>
<td></td>
<td>515</td>
<td>939</td>
</tr>
<tr>
<td>### NORTH LAHONTAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truckee River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Tahoe to Farad accretions</td>
<td></td>
<td>272</td>
<td>713</td>
</tr>
<tr>
<td>Lake Tahoe Rise (assuming gates closed, in ft)</td>
<td></td>
<td>1.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Carson River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Fork Carson River at Woodfords</td>
<td></td>
<td>55</td>
<td>135</td>
</tr>
<tr>
<td>East Fork Carson River near Gardnerville</td>
<td></td>
<td>190</td>
<td>407</td>
</tr>
<tr>
<td>Walker River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Walker River below Little Walker, near Coleville</td>
<td></td>
<td>153</td>
<td>330</td>
</tr>
<tr>
<td>East Walker River near Bridgeport</td>
<td></td>
<td>65</td>
<td>209</td>
</tr>
<tr>
<td>### SOUTH LAHONTAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owens River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tributary flow to Owens River (5)</td>
<td></td>
<td>235</td>
<td>579</td>
</tr>
</tbody>
</table>

(1) See inside back cover for definition
(2) All 50 year averages are based on years 1951-2000 unless otherwise noted
(3) Forecast by DWR and National Weather Service California-Nevada River Forecast Center.
(5) Forecast by Department of Water and Power, City of Los Angeles, average based on years 1951-2000.
SNOWPACK - First of the month measurements made at 7 snow courses indicate an area wide snow water equivalent of 35.5 inches. This is 140 percent of the April 1 average. Last year at this time the pack was holding 30.4 inches of water.

PRECIPITATION - Seasonal precipitation (October 1 through the end of last month) on this area was 150 percent of normal. Precipitation last month was about 185 percent of the monthly average. Seasonal precipitation at this time last year stood at 85 percent of normal.

RESERVOIR STORAGE - First of the month storage in 6 reservoirs was 2.6 million acre-feet which is 105 percent of average. About 85 percent of available capacity was being used. Storage in these reservoirs at this time last year was 95 percent of average.

RUNOFF - Seasonal runoff of streams draining the area totaled 16.6 million acre-feet which is 165 percent of the average for this period. Last year, runoff for the same period was 60 percent of average.
SACRAMENTO RIVER REGION

SNOWPACK - First of the month measurements made at 75 snow courses indicate an area wide snow water equivalent of 33.1 inches. This is 110 percent of the April 1 average. Last year at this time the pack was holding 34.3 inches of water.

PRECIPITATION - Seasonal precipitation (October 1 through the end of last month) on this area was 145 percent of normal. Precipitation last month was about 200 percent of the monthly average. Seasonal precipitation at this time last year stood at 110 percent of normal.

RESERVOIR STORAGE - First of the month storage in 43 reservoirs was 13.7 million acre-feet which is 110 percent of average. About 85 percent of available capacity was being used. Storage in these reservoirs at this time last year was 100 percent of average.

RUNOFF - Seasonal runoff of streams draining the area totaled 18.0 million acre-feet which is 155 percent of average for this period. Last year, runoff for the same period was 95 percent of average.

The Sacramento Region 40-30-30 Water Supply Index is forecast to be 11.4 assuming median meteorological conditions for the remainder of the year. This classifies the year as "wet" in the Sacramento Valley according to the State Water Resources Control Board.
SAN JOAQUIN RIVER AND TULARE LAKE REGIONS

SNOWPACK - First of the month measurements made at 69 San Joaquin Region snow courses indicate an area wide snow water equivalent of 42.3 inches. This is 135 percent of the April 1 average. Last year at this time the pack was holding 49.2 inches of water. At the same time 35 Tulare Lake Region snow courses indicated a basin-wide snow water equivalent of 32.6 inches which is 135 percent of the average for April 1. Last year at this time the basin was holding 38.7 inches of water.

PRECIPITATION - Seasonal precipitation (October 1 through the end of last month) on the San Joaquin Region was 125 percent of normal. Precipitation last month was about 205 percent of the monthly average. Seasonal precipitation at this time last year stood at 150 percent of normal. Seasonal precipitation on the Tulare Lake Region was 110 percent of normal. Precipitation last month was about 200 percent of the monthly average. Seasonal precipitation at this time last year stood at 135 percent of normal.

RESERVOIR STORAGE - First of the month storage in 34 San Joaquin Region reservoirs was 9.4 million acre-feet which is 125 percent of average. About 80 percent of available capacity was being used. Storage in these reservoirs at this time last year was 120 percent of average. First of the month storage in 6 Tulare Lake Region reservoirs was 1.3 million acre-feet which is 145 percent of average and about 60 percent of available capacity. Storage in these reservoirs at this time last year was 100 percent of average.

RUNOFF - Seasonal runoff of streams draining the San Joaquin Region totaled 3.8 million acre-feet which is 150 percent of average for this period. Last year, runoff for the same period was 130 percent of average. Seasonal runoff of streams draining the Tulare Lake Basin totaled 950 thousand acre-feet which is 105 percent of average for this period. Last year runoff for this same period was 110 percent of average. The San Joaquin River Region 60-20-20 Water Supply Index is forecast to be 4.5 assuming median meteorological conditions. This classifies the year as "wet" in the San Joaquin Region according to the State Water Resources Control Board.
NORTH AND SOUTH LAHONTAN REGIONS

SNOWPACK- First of the month measurements made at 15 North Lahontan snow courses indicate an area wide snow water equivalent of 40.3 inches. This is 125 percent of the April 1 average. Last year at this time the pack was holding 34.8 inches of water. At the same time 20 South Lahontan Region snow courses indicated a basin-wide snow water equivalent of 29.4 inches which is 145 percent of the average for April 1. Last year at this time the basin was holding 33.7 inches of water.

PRECIPITATION - Seasonal precipitation (October 1 through the end of last month) on the North Lahontan was 140 percent of normal. Precipitation last month was about 130 percent of the monthly average. Seasonal precipitation at this time last year stood at 110 percent of normal. Seasonal precipitation on the South Lahontan was 100 percent of normal. Precipitation last month was about 110 percent of the monthly average. Seasonal precipitation at this time last year stood at 285 percent of normal.

RESERVOIR STORAGE- First of the month storage in 5 North Lahontan reservoirs was 747 thousand acre-feet which is 125 percent of average. About 70 percent of available capacity was being used. Storage in these reservoirs at this time last year was 40 percent of average. Lake Tahoe was 3.8 feet above its natural rim on April 1. First of the month storage in 8 South Lahontan reservoirs was 300 thousand acre-feet which is 115 percent of average and about 75 percent of available capacity. Storage in these reservoirs at this time last year was 95 percent of average.

RUNOFF- Seasonal runoff of streams draining the North Lahontan Region totaled 549 thousand acre-feet which is 185 percent of average for this period. Last year, runoff for the same period was 70 percent of average.

Seasonal runoff of the Owens River in the South Lahontan totaled 63 thousand acre-feet which is 95 percent of average for this period. Last year runoff for this same period was 75 percent of average.
SAN FRANCISCO BAY AND CENTRAL COAST REGIONS

PRECIPITATION - Seasonal precipitation (October 1 through the end of last month) on the San Francisco Bay Region was 155 percent of normal. Precipitation last month was about 275 percent of the monthly average. Seasonal precipitation at this time last year stood at 140 percent of normal.

Seasonal precipitation on the Central Coast Region was 110 percent of normal. Precipitation last month was about 195 percent of the monthly average. Seasonal precipitation at this time last year stood at 190 percent of normal.

RESERVOIR STORAGE - First of the month storage in 14 San Francisco Bay Region reservoirs was 456 thousand acre-feet which is 115 percent of average. About 85 percent of available capacity was being used. Storage in these reservoirs at this time last year was 110 percent of average.

First of the month storage in 6 Central Coast Region reservoirs was 900 thousand acre-feet which is 130 percent of average and about 95 percent of available capacity. Storage in these reservoirs at this time last year was 125 percent of average.

RUNOFF - Seasonal runoff of the Napa River in the San Francisco Bay Region totaled 108 thousand acre-feet which is 160 percent of average for this period. Last year, runoff for the same period was 90 percent of average.

Seasonal runoff of streams draining the Central Coast Region totaled 240 thousand acre-feet which is 85 percent of average for this period. Last year runoff for this same period was 205 percent of average.
SOUTH COAST AND COLORADO RIVER REGIONS

PRECIPITATION - October through March (seasonal) precipitation on the South Coast Region is 60 percent of normal. March precipitation was 115 percent of the monthly average. Seasonal precipitation at this time last year was 235 percent of normal. Seasonal precipitation on the Colorado River-Desert Region is 55 percent of normal. March precipitation was 40 percent of the monthly average. Seasonal precipitation at this time last year stood at 315 percent of average.

RESERVOIR STORAGE – March 31 storage in 29 major South Coast Region reservoirs is 1.5 million acre-feet or 100 percent of average. About 80 percent of available capacity is being used. Storage in these reservoirs at this time last year was 110 percent of average. On March 31 combined storage in Lakes Powell, Mead, Mohave and Havasu was about 28.3 million acre-feet or about 70 percent of average. About 55 percent of available capacity was in use. Last year at this time, these reservoirs were storing 65 percent of average.

RUNOFF - Seasonal runoff from selected South Coast Region streams totaled 30 thousand acre-feet which is 80 percent of average. Seasonal runoff from these streams last year was 315 percent of average.

COLORADO RIVER - The April -July inflow to Lake Powell is forecast to be 7.7 million acre-feet, which is 97 percent of average. The April 1 snowpack in the Colorado River basin above Lake Powell is average, highest in the Duchesne at 120 percent and lowest in the San Juan at 65 percent.

CENTRAL VALLEY PROJECT

As of March 31, 2006, CVP storage was 9.7 million acre-feet, which is an increase of 0.8 million acre-feet compared to one year ago and is approximately 111% of normal for that date.

The Bureau of Reclamation announced updated water year 2006 supply allocations for the CVP contractors on March 15, 2006. Based on a conservative water supply forecast prepared from information available March 1, 2006, and a water year inflow into Shasta Reservoir of 6.3 million acre-feet, CVP water supplies were: Agricultural contractors North of Delta 100% and South of Delta 65%; Urban contractors North of Delta 100% and South of Delta 90%; Sacramento River water rights and San Joaquin Exchange Contractors 100%; Wildlife Refuges 100%; Eastside Division contractors (Stanislaus River) projected to be 155,000 acre-feet; Friant Division contractors 100% of Class 1 and Uncontrolled Season for Class 2. Updated allocations will be announced in mid-April.

STATE WATER PROJECT

On March 31, total storage in the major SWP reservoirs was about 4.59 MAF, compared with about 4.17 MAF at this time in 2005. End of month storage at Lake Oroville was about 2.90 MAF as compared to 2.46 MAF last year. The State’s share of San Luis Reservoir storage was about 1.06 MAF, which is about the same at this time last year. The combined storage in our southern reservoirs was about 624 TAF, compared with about 654 TAF at this time last year.

Due to significantly wetter conditions in the Sacramento Valley in March, the Department’s SWP allocation was increased to 80% (about 3.30 MAF), a rise from February’s allocation of 70%.
<table>
<thead>
<tr>
<th>RESERVOIR</th>
<th>CAPACITY 1,000 AF</th>
<th>AVERAGE STORAGE 1,000 AF</th>
<th>2005 1,000 AF</th>
<th>2006 1,000 AF</th>
<th>PERCENT</th>
<th>PERCENT AVERAGE CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE WATER PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Oroville</td>
<td>3,538</td>
<td>2,790</td>
<td>2,458</td>
<td>2,899</td>
<td>104%</td>
<td>82%</td>
</tr>
<tr>
<td>San Luis Reservoir (SWP)</td>
<td>1,062</td>
<td>984</td>
<td>1,063</td>
<td>1,063</td>
<td>108%</td>
<td>100%</td>
</tr>
<tr>
<td>Lake Del Valle</td>
<td>77</td>
<td>37</td>
<td>40</td>
<td>41</td>
<td>109%</td>
<td>53%</td>
</tr>
<tr>
<td>Lake Silverwood</td>
<td>73</td>
<td>66</td>
<td>74</td>
<td>70</td>
<td>106%</td>
<td>95%</td>
</tr>
<tr>
<td>Pyramid Lake</td>
<td>171</td>
<td>164</td>
<td>170</td>
<td>166</td>
<td>102%</td>
<td>97%</td>
</tr>
<tr>
<td>Castaic Lake</td>
<td>325</td>
<td>285</td>
<td>289</td>
<td>318</td>
<td>111%</td>
<td>98%</td>
</tr>
<tr>
<td>Perris Lake</td>
<td>132</td>
<td>118</td>
<td>122</td>
<td>71</td>
<td>60%</td>
<td>54%</td>
</tr>
<tr>
<td>CENTRAL VALLEY PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinity Lake</td>
<td>2,448</td>
<td>1,961</td>
<td>1,842</td>
<td>2,102</td>
<td>107%</td>
<td>86%</td>
</tr>
<tr>
<td>Lake Shasta</td>
<td>4,552</td>
<td>3,705</td>
<td>3,827</td>
<td>3,854</td>
<td>104%</td>
<td>85%</td>
</tr>
<tr>
<td>Whiskeytown Lake</td>
<td>241</td>
<td>213</td>
<td>205</td>
<td>215</td>
<td>101%</td>
<td>89%</td>
</tr>
<tr>
<td>Folsom Lake</td>
<td>977</td>
<td>622</td>
<td>674</td>
<td>710</td>
<td>114%</td>
<td>73%</td>
</tr>
<tr>
<td>New Melones Reservoir</td>
<td>2,420</td>
<td>1,452</td>
<td>1,578</td>
<td>2,075</td>
<td>143%</td>
<td>86%</td>
</tr>
<tr>
<td>Millerton Lake</td>
<td>520</td>
<td>348</td>
<td>490</td>
<td>496</td>
<td>142%</td>
<td>95%</td>
</tr>
<tr>
<td>San Luis Reservoir (CVP)</td>
<td>971</td>
<td>870</td>
<td>966</td>
<td>969</td>
<td>111%</td>
<td>100%</td>
</tr>
<tr>
<td>COLORADO RIVER PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Mead</td>
<td>26,159</td>
<td>20,492</td>
<td>16,220</td>
<td>15,337</td>
<td>75%</td>
<td>59%</td>
</tr>
<tr>
<td>Lake Powell</td>
<td>24,322</td>
<td>19,064</td>
<td>8,015</td>
<td>10,704</td>
<td>56%</td>
<td>44%</td>
</tr>
<tr>
<td>Lake Mohave</td>
<td>1,810</td>
<td>1,679</td>
<td>1,689</td>
<td>1,665</td>
<td>99%</td>
<td>92%</td>
</tr>
<tr>
<td>Lake Havasu</td>
<td>619</td>
<td>556</td>
<td>551</td>
<td>564</td>
<td>101%</td>
<td>91%</td>
</tr>
<tr>
<td>EAST BAY MUNICIPAL UTILITY DISTRICT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pardee Res</td>
<td>198</td>
<td>181</td>
<td>186</td>
<td>194</td>
<td>107%</td>
<td>98%</td>
</tr>
<tr>
<td>Camanche Reservoir</td>
<td>417</td>
<td>252</td>
<td>372</td>
<td>340</td>
<td>135%</td>
<td>82%</td>
</tr>
<tr>
<td>East Bay (4 res.)</td>
<td>147</td>
<td>135</td>
<td>128</td>
<td>136</td>
<td>101%</td>
<td>92%</td>
</tr>
<tr>
<td>CITY AND COUNTY OF SAN FRANCISCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hetch-Hetchy Reservoir</td>
<td>360</td>
<td>130</td>
<td>192</td>
<td>214</td>
<td>164%</td>
<td>59%</td>
</tr>
<tr>
<td>Cherry Lake</td>
<td>268</td>
<td>122</td>
<td>229</td>
<td>219</td>
<td>179%</td>
<td>82%</td>
</tr>
<tr>
<td>Lake Eleanor</td>
<td>26</td>
<td>12</td>
<td>23</td>
<td>17</td>
<td>141%</td>
<td>63%</td>
</tr>
<tr>
<td>South Bay/Peninsula (4 res.)</td>
<td>225</td>
<td>180</td>
<td>170</td>
<td>187</td>
<td>104%</td>
<td>83%</td>
</tr>
<tr>
<td>CITY OF LOS ANGELES (D.W.P.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Crowley</td>
<td>183</td>
<td>128</td>
<td>139</td>
<td>150</td>
<td>117%</td>
<td>82%</td>
</tr>
<tr>
<td>Grant Lake</td>
<td>48</td>
<td>28</td>
<td>16</td>
<td>43</td>
<td>154%</td>
<td>90%</td>
</tr>
<tr>
<td>Other Aqueduct Storage (6 res.)</td>
<td>83</td>
<td>77</td>
<td>44</td>
<td>49</td>
<td>63%</td>
<td>58%</td>
</tr>
</tbody>
</table>
Telemetered Snow Water Equivalents

April 1, 2006
(Averages based on period record)

Inches of Water Equivalent

<table>
<thead>
<tr>
<th>Basin Name</th>
<th>Station Name</th>
<th>Elev</th>
<th>Average</th>
<th>Apr 1 of Average</th>
<th>Previous</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity River</td>
<td>Peterson Flat</td>
<td>7150'</td>
<td>29.2</td>
<td>38.3</td>
<td>131.3</td>
<td>37.6</td>
</tr>
<tr>
<td></td>
<td>Red Rock Mountain</td>
<td>6700'</td>
<td>39.6</td>
<td>68.8</td>
<td>173.8</td>
<td>66.9</td>
</tr>
<tr>
<td></td>
<td>Bonanza King</td>
<td>6450'</td>
<td>40.5</td>
<td>43.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shimmey Lake</td>
<td>6400'</td>
<td>40.3</td>
<td>74.4</td>
<td>184.6</td>
<td>72.5</td>
</tr>
<tr>
<td></td>
<td>Middle Boulder 3</td>
<td>6200'</td>
<td>28.3</td>
<td>58.2</td>
<td>205.5</td>
<td>56.9</td>
</tr>
<tr>
<td></td>
<td>Highland Lakes</td>
<td>6030'</td>
<td>29.9</td>
<td>54.5</td>
<td>182.2</td>
<td>51.8</td>
</tr>
<tr>
<td></td>
<td>Scott Mountain</td>
<td>5900'</td>
<td>16.0</td>
<td>44.8</td>
<td>279.8</td>
<td>43.6</td>
</tr>
<tr>
<td></td>
<td>Mumbo Basin</td>
<td>5650'</td>
<td>22.4</td>
<td>50.0</td>
<td>223.4</td>
<td>48.4</td>
</tr>
<tr>
<td></td>
<td>Big Flat</td>
<td>5100'</td>
<td>15.8</td>
<td>32.1</td>
<td>203.2</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>Crowder Flat</td>
<td>5100'</td>
<td>—</td>
<td>5.1</td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>Sacramento River</td>
<td>Cedar Pass</td>
<td>7100'</td>
<td>18.1</td>
<td>20.0</td>
<td>110.5</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>Blacks Mountain</td>
<td>7050'</td>
<td>12.7</td>
<td>15.4</td>
<td>120.9</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>Sand Flat</td>
<td>6750'</td>
<td>42.4</td>
<td>59.0</td>
<td>139.2</td>
<td>57.6</td>
</tr>
<tr>
<td></td>
<td>Medicine Lake</td>
<td>6700'</td>
<td>32.6</td>
<td>52.6</td>
<td>161.2</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>Adin Mountain</td>
<td>6200'</td>
<td>13.6</td>
<td>15.0</td>
<td>110.3</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>Snow Mountain</td>
<td>5950'</td>
<td>27.0</td>
<td>45.5</td>
<td>168.4</td>
<td>44.2</td>
</tr>
<tr>
<td></td>
<td>Slate Creek</td>
<td>5700'</td>
<td>29.0</td>
<td>52.5</td>
<td>181.0</td>
<td>50.5</td>
</tr>
<tr>
<td></td>
<td>Stouts Meadow</td>
<td>5400'</td>
<td>36.0</td>
<td>60.3</td>
<td>167.5</td>
<td>58.0</td>
</tr>
<tr>
<td>Feather River</td>
<td>Kettle Rock</td>
<td>7300'</td>
<td>25.5</td>
<td>29.8</td>
<td>116.7</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td>Grizzly Ridge</td>
<td>6900'</td>
<td>29.7</td>
<td>29.2</td>
<td>98.2</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>Pilot Peak</td>
<td>6800'</td>
<td>52.6</td>
<td>41.1</td>
<td>78.1</td>
<td>38.7</td>
</tr>
<tr>
<td></td>
<td>Gold Lake</td>
<td>6750'</td>
<td>36.5</td>
<td>37.7</td>
<td>103.2</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td>Humbug</td>
<td>6500'</td>
<td>28.0</td>
<td>45.4</td>
<td>162.1</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>Rattlesnake</td>
<td>6100'</td>
<td>14.0</td>
<td>25.7</td>
<td>183.4</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>Bucks Lake</td>
<td>5750'</td>
<td>44.7</td>
<td>49.0</td>
<td>109.5</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td>Four Trees</td>
<td>5150'</td>
<td>20.0</td>
<td>31.8</td>
<td>159.0</td>
<td>29.5</td>
</tr>
<tr>
<td>Eel River</td>
<td>Noel Spring</td>
<td>5100'</td>
<td>—</td>
<td>10.7</td>
<td>—</td>
<td>10.0</td>
</tr>
<tr>
<td>Yuba & American Rivers</td>
<td>Lake Lois</td>
<td>8600'</td>
<td>39.5</td>
<td>64.4</td>
<td>163.0</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>Schneiders</td>
<td>8750'</td>
<td>34.5</td>
<td>70.6</td>
<td>204.8</td>
<td>68.8</td>
</tr>
<tr>
<td></td>
<td>Carson Pass</td>
<td>8353’</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Caples Lake</td>
<td>8000’</td>
<td>30.9</td>
<td>41.1</td>
<td>133.1</td>
<td>40.2</td>
</tr>
<tr>
<td></td>
<td>Alpha</td>
<td>7600’</td>
<td>35.9</td>
<td>39.8</td>
<td>110.8</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>Meadow Lake</td>
<td>7200’</td>
<td>55.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Silver Lake</td>
<td>7100’</td>
<td>22.7</td>
<td>36.0</td>
<td>158.5</td>
<td>34.8</td>
</tr>
<tr>
<td></td>
<td>Central Sierra Snow Lab</td>
<td>6900’</td>
<td>33.6</td>
<td>45.9</td>
<td>136.6</td>
<td>44.3</td>
</tr>
<tr>
<td></td>
<td>Huysink</td>
<td>6600’</td>
<td>42.6</td>
<td>33.2</td>
<td>78.0</td>
<td>32.2</td>
</tr>
<tr>
<td></td>
<td>Van Vleck</td>
<td>6700’</td>
<td>35.9</td>
<td>45.2</td>
<td>126.0</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>Robbs Saddle</td>
<td>5900’</td>
<td>21.4</td>
<td>30.6</td>
<td>142.9</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>Greek Store</td>
<td>5600’</td>
<td>21.0</td>
<td>29.5</td>
<td>140.6</td>
<td>28.6</td>
</tr>
<tr>
<td></td>
<td>Blue Canyon</td>
<td>5280’</td>
<td>9.0</td>
<td>24.5</td>
<td>272.1</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>Robbs Powerhouse</td>
<td>5150’</td>
<td>5.2</td>
<td>18.4</td>
<td>353.8</td>
<td>17.4</td>
</tr>
<tr>
<td>Mokelumne & Stanislaus Rivers</td>
<td>Deadman Creek</td>
<td>9250’</td>
<td>37.2</td>
<td>32.4</td>
<td>87.1</td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td>Highland Meadow</td>
<td>8700’</td>
<td>47.9</td>
<td>61.2</td>
<td>127.8</td>
<td>60.6</td>
</tr>
<tr>
<td></td>
<td>Gianelli Meadow</td>
<td>8400’</td>
<td>55.5</td>
<td>64.9</td>
<td>116.9</td>
<td>63.6</td>
</tr>
<tr>
<td></td>
<td>Lower Relief Valley</td>
<td>8100’</td>
<td>41.2</td>
<td>63.4</td>
<td>153.8</td>
<td>62.2</td>
</tr>
<tr>
<td></td>
<td>Blue Lakes</td>
<td>8000’</td>
<td>33.1</td>
<td>36.6</td>
<td>110.6</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>Mud Lake</td>
<td>7900’</td>
<td>44.9</td>
<td>64.6</td>
<td>143.9</td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td>Stanislaus Meadow</td>
<td>7750’</td>
<td>47.5</td>
<td>63.8</td>
<td>134.4</td>
<td>62.7</td>
</tr>
<tr>
<td></td>
<td>Bloods Creek</td>
<td>7200’</td>
<td>35.5</td>
<td>34.8</td>
<td>98.0</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>Black Springs</td>
<td>6500’</td>
<td>32.0</td>
<td>30.3</td>
<td>94.6</td>
<td>28.9</td>
</tr>
<tr>
<td>Tuolumne & Merced Rivers</td>
<td>Tioga Pass Entrance</td>
<td>9945’</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Dana Meadows</td>
<td>9800’</td>
<td>27.7</td>
<td>38.5</td>
<td>139.0</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td>Slide Canyon</td>
<td>9200’</td>
<td>41.1</td>
<td>58.3</td>
<td>141.8</td>
<td>57.3</td>
</tr>
<tr>
<td></td>
<td>Lake Tenaya</td>
<td>8150’</td>
<td>33.1</td>
<td>44.3</td>
<td>133.9</td>
<td>43.2</td>
</tr>
<tr>
<td></td>
<td>Tuolumne Meadows</td>
<td>8600’</td>
<td>22.6</td>
<td>32.1</td>
<td>142.2</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>Horse Meadow</td>
<td>8400’</td>
<td>48.6</td>
<td>67.6</td>
<td>139.0</td>
<td>66.2</td>
</tr>
<tr>
<td></td>
<td>Ostrander Lake</td>
<td>8200’</td>
<td>34.8</td>
<td>49.5</td>
<td>142.2</td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td>Paradise Meadow</td>
<td>7650’</td>
<td>41.3</td>
<td>53.3</td>
<td>129.0</td>
<td>52.1</td>
</tr>
<tr>
<td></td>
<td>Gin Flat</td>
<td>7050’</td>
<td>34.2</td>
<td>24.5</td>
<td>71.6</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>Lower Kibbie Ridge</td>
<td>6700’</td>
<td>27.4</td>
<td>22.4</td>
<td>81.8</td>
<td>21.5</td>
</tr>
</tbody>
</table>
SAN JOAQUIN RIVER
- Volcanic Knob: 10050' 30.1 44.5 147.7 44.5 41.2
- Agnew Pass: 9450' 32.3 27.0 83.6 27.0 25.7
- Kaiser Point: 9200' 37.8 47.5 125.5 46.8 42.8
- Green Mountain: 7900' 30.8 39.0 126.6 38.3 34.4
- Tamarack Summit: 7550' 30.5 39.7 130.2 38.5 34.3
- Chilko Knob: 7150' 38.0 38.3 100.7 37.2 33.1
- Huntington Lake: 7000' 20.1 25.6 127.2 24.8 22.2
- Graveyard Meadow: 6900' 18.8 24.0 127.7 23.0 20.0
- Poison Ridge: 6900' 28.9 — — — —

KINGS RIVER
- Bishop Pass: 11200' 34.0 37.4 110.1 37.2 33.5
- Charlotte Lake: 10400' 27.5 40.5 147.4 40.2 36.7
- State Lakes: 10300' 29.0 49.9 172.1 48.9 43.8
- Mitchell Meadow: 9900' 32.9 — — — —
- Blackcap Basin: 10300' 34.3 42.2 123.0 41.7 38.7
- West Woodchuck Meadow: 9100' 32.8 47.3 144.2 47.2 43.1
- Big Meadows: 7600' 25.9 40.4 156.1 39.2 33.7

KAWEAH & TULE RIVERS
- Farewell Gap: 9500' 34.5 66.3 192.2 65.4 60.7
- Quaking Aspen: 7200' 21.0 23.3 110.9 22.9 19.9
- Giant Forest: 6650' 10.0 — — — —

KERN RIVER
- Upper Tyndall Creek: 11400' 27.7 27.6 99.6 27.5 24.9
- Crabtree Meadow: 10700' 19.8 21.7 109.7 21.6 19.7
- Chagoopa Plateau: 10300' 21.8 20.8 95.3 20.4 18.1
- Pascoes: 9150' 24.9 36.6 147.0 36.2 32.2
- Tunnel Guard Station: 8900' 19.1 122.6 19.1 17.1
- Wet Meadows: 8950' 30.3 — — — —
- Big Meadows: 7600' 25.9 40.4 156.1 39.2 33.7

SURPRISE VALLEY AREA
- Dismal Swamp: 7050' 29.2 41.5 142.1 41.1 40.0

TRUCKEE RIVER
- Mount Rose Ski Area: 8900' 38.5 64.8 168.3 63.9 60.2
- Independence Lake: 8450' 41.4 54.2 130.9 53.0 49.9
- Big Meadows: 8700' 25.7 32.5 126.5 31.9 29.6
- Squaw Valley: 8200' 46.5 72.4 155.7 72.3 70.9
- Independence Camp: 7800' 21.3 19.2 88.1 17.5 15.0
- Independence Creek: 6500' 12.7 13.5 106.3 13.2 12.8
- Truckee 2: 6400' 14.3 16.5 115.4 15.7 14.1

LAKE TAHOE BASIN
- Heavenly Valley: 8800' 28.1 37.7 134.2 36.7 34.2
- Hagans Meadow: 8000' 16.5 27.1 164.2 26.6 25.8
- Martelle Lake: 8000' 21.1 34.7 164.5 33.8 31.1
- Echo Peak 5: 7800' 39.5 55.9 141.5 54.3 50.2
- Rubicon Peak 2: 7500' 29.1 31.4 107.9 30.4 27.4
- Tahoe City Cross: 6750' 16.0 13.3 83.1 12.3 10.7
- Ward Creek 3: 6750' 39.4 44.9 114.0 43.6 39.8
- Fallen Leaf Lake: 6250' 7.0 6.9 98.6 6.2 5.4

CARSON RIVER
- Ebbetts Pass: 8700' 38.8 — 54.0 139.2 53.0 50.1
- Horse Meadow: 8550' — — 35.7 — 34.9 32.9
- Burnside Lake: 8129' — 36.6 — 35.3 33.0
- Forestdale Creek: 8017' — — — 32.9 30.1
- Poison Flat: 7900' 16.2 22.2 137.0 21.8 19.9
- Monitor Pass: 8350' — 25.0 — 24.6 23.1
- Spratt Creek: 6150' 4.5 1.9 42.2 1.6 2.4

WALKER RIVER
- Leavitt Lake: 9600' 86.1 — 85.1 80.7
- Summit Meadow: 9313' — 42.2 — 41.4 36.4
- Virginia Lakes: 9300' 20.3 31.0 152.7 30.4 28.3
- Lobsell Lake: 9200' 17.3 29.8 172.3 29.8 27.4
- Sonora Pass Bridge: 8750' 26.0 36.6 140.8 35.8 33.3
- Leavitt Meadows: 7200' 8.0 10.6 132.5 10.6 9.6

OWENS RIVER/MONO LAKE
- Gem Pass: 10750' 31.7 50.9 160.6 50.4 46.8
- Sawmill: 10200' 19.4 22.7 117.0 22.7 20.2
- Cottonwood Lakes: 10150' 11.6 20.4 176.2 20.4 19.3
- Big Pine Creek: 9800' 17.9 — — — —
- South Lake: 9600' 16.0 28.4 177.8 28.2 25.9
- Mammoth Pass: 9300' 42.4 55.0 129.6 53.8 48.4
- Rock Creek Lakes: 10000' 14.0 27.8 198.4 27.8 26.0

NORMAL SNOWPACK ACCUMULATION EXPRESSED AS A PERCENT OF APRIL 1ST AVERAGE

<table>
<thead>
<tr>
<th>AREA</th>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Valley North</td>
<td>45%</td>
<td>70%</td>
<td>90%</td>
<td>100%</td>
<td>75%</td>
</tr>
<tr>
<td>Central Valley South</td>
<td>45%</td>
<td>55%</td>
<td>85%</td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>North Coast</td>
<td>40%</td>
<td>60%</td>
<td>85%</td>
<td>100%</td>
<td>80%</td>
</tr>
</tbody>
</table>
SNOWLINES

Remember that this year’s Western Snow Conference meeting is April 11-14 in Great Falls, Montana. For further information regarding the Western Snow Conference contact Frank Gehrke at 916-574-2635 or gridley@water.ca.gov. Registration and program information is available on the web at .http://www.westernsnowconference.org/

On March 9, 2006, Don Paulsen passed away at his home in Sonora as it began to snow there in town. Don had been battling cancer for some time and the last week or so was extremely difficult for him. Don made his first snow survey in the Tuolumne River watershed on the March 1 survey in 1949 just a little over 57 years ago. We will miss Don’s presence greatly.

Depicted on this month’s cover is Phillips Station as it existed in 1908. In 1941 snow course measurements began in the meadow nearby this building.
STATE OF CALIFORNIA
Arnold Schwarzenegger, Governor

THE RESOURCES AGENCY
Mike Chrisman, Secretary for Resources

Department of Water Resources
Lester A. Snow
Director

Leslie F. Harder, Jr.
Acting Deputy Director

Stephen W. Verigin
Acting Chief Deputy Director

Gerald E. Johns
Deputy Director

Brian E. White
Assistant Director, Legislative Affairs

Nancy J. Saracino
Chief Counsel

Division of Flood Management

Rod Mayer...Acting Chief, Division of Flood Management
Maury Roos..State Hydrologist
Gary B. Bardini...Chief, Hydrology and Flood Operations
Arthur Hinojosa..Chief, Hydrology Branch

Prepared by

Frank Gehreke..Chief, Snow Surveys
Dave Rizzardo..Chief, Forecasting Section
John King...Engineer, W.R.
Boone Lek...Engineer, W.R.
Aaron Miller...Engineer, W.R.
Stephen Nemeth...Engineer, W.R.
Matt Winston..Senior Meteorologist, W.R.
David M. Hart..Water Resources Engineering Associate

COOPERATING AGENCIES

Public Agencies
Buena Vista Water Storage District
East Bay Municipal Utility District
El Dorado Irrigation District
Fresno Irrigation District
Kaweah Delta Water Conservation District
Kern Delta Water District
Kings River Improvement District
Lower Tule River Irrigation District
Madera Irrigation District
Monterey Irrigation District
Nipomo Slough Project
North Kern Water Storage District
Northern California Power Agency
Oakdale Irrigation District
Oroville-W rekette Irrigation District
Pioneer County Water Agency
Sacramento Municipal Utility District
San Joaquin Exchange Contractors Water Association
South San Joaquin Irrigation District
Tri Delta Project
Truckee River Basin Water Commission
Tuolumne River Basin Water Storage District
Tuolumne Irrigation District
Yuba County Water Agency

Private Organizations
J.G. Fawell Company
Kaweah and St. Johns River Association
Kings River Water Association
Tule River Association
State Water Project Contractors

Municipalities
City of Bakersfield Water Department
City of Los Angeles Department of Water and Power
City and County of San Francisco Hetch Hetchy Water and Power

State Agencies
University of California - Institute of Marine Science
Central Sierra Snow Laboratory
Sequoia National Park
California Department of Forests & Fire Protection
California Department of Water Resources

Public Utilities
Pacific Gas and Electric Company
Southern California Edison Company

Federal Agencies
U.S. Department of Agriculture
Forest Service (National Forests)
Natural Resources Conservation Service
U.S. Department of Commerce
National Weather Service
U.S. Department of Interior
Bureau of Reclamation
Geological Survey
Water Resources
National Park Service
National Park Service

Other Cooperative Programs
Nevada Cooperative Snow Surveys
Oregon Cooperative Snow Surveys

SNOWPACK - Snow data is a major index of spring and summer runoff from Sierra Nevada watersheds. April 1 data historically reflects the magnitude of the snowpack at or near the maximum seasonal accumulation. Averages are based on April 1 data for the period 1951-2000 (50 years, except for data sites established after 1951).

PRECIPITATION - Averages are based on April 1 data for the period 1951-2000 (50 years, except for data sites established after 1951).

RUNOFF AND FORECASTS - Runoff data and runoff forecasts are shown as unimpaired values. Unimpaired runoff represents the natural water production of a river basin, unaltered by upstream diversions, storages, or by export or import of water to or from other watersheds. Forecast of runoff assumes median conditions subsequent to the date of forecast.

Runoff probability ranges are statistically derived from historical data. The 80 percent probability range is comprised of the 90 percent exceedence level value and the 10 percent exceedence level value. This means that actual runoff should fall within the stated limits eight times out of ten.

Runoff averages for most streams are based on the period 1951-2000.

Reservoir storage averages are based on the period from 1951 (or beginning of operation) to 2000.

For more details contact California Cooperative Snow Surveys, P.O. Box 219000, Sacramento, CA 95821-9000, (916) 574-2535 or gridley@water.ca.gov.

INDICES OF WATER AVAILABILITY

The Sacramento River water year unimpaired runoff is the sum of: Sacramento River above Bend Bridge, Feather River Inflow to Lake Oroville, Yuba River near Smartville and American River inflow to Folsom Lake.

The Sacramento Valley Water Year Hydrologic Classification (40-50-30 Index). The values 40-50-30 represent the percentage weight given to the three variables in the formula for the Index. The first variable is the forecasted unimpaired runoff from April through July (40 percent). The second variable is the estimated unimpaired runoff from October through March (30 Percent). The third variable is the estimated water year runoff from October through March (30 Percent). The third variable is the estimated water year runoff from October through March (30 Percent).

The San Joaquin River Year Hydrologic Classification (60-20-20 Index). In a similar manner the values 60-20-20 represents the percentage weights on April through July runoff, October through March runoff and previous year's Index. The San Joaquin River unimpaired runoff is the sum of: Stanislaus River Inflow to New Melones Lake, Tuolumne River Inflow to New Don Pedro Reservoir, Merced River Inflow to Lake McClure and San Joaquin River Inflow to Millerton Lake.

Runoff of the eight major rivers of the Sacramento and San Joaquin Regions is the sum of the runoff in the eight major rivers used in the two above indices.