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ProblemProblem
• Climate and hydrologic models 

predict changes in climate (warmer 
spring) will resulting in snowmelt in 
the Sierra Nevada  occurring earlier 
and with increasing spatial variability 
(we can see it today)

• Variability in solar radiation loading 
caused by topographic shading has 
a greater impact on the variability of 
snowmelt when it occurs earlier in 
the season

• Can we refine our simple snow melt 
models, which are based on air 
temperature, by incorporating the 
influence of radiation and still keep it 
simple?
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(an interesting twist)
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• The onset and amount of runoff 
from springtime snowmelt isn’t 
just a function of snowpack

• In fall of 2007 snow fell on dry 
soils and the available soil water 
storage may have provided a 
delay, and even a loss to spring 
streamflows

• Current soil moisture monitoring 
and modeling may help address 
this issue
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• Soil moisture monitoring and 
modeling
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• Tripod LiDAR snow water 
equivalent measurements at 
Conway Summit

• Climate change is here: Future 
work
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Water Balance
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Precipitation
How much
Form (snow/rain)

Snowpack
Sublimation
Melt 

Soil moisture
Drainage into underlying 

bedrock
Flow Path

Key to knowing what is 
happening
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Soil

Snowpack

Infilled
fractures

Fractured 
BedrockOpen

fractures
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lateral flow infiltration

Infiltration/Drainage into Bedrock under SnowInfiltration/Drainage into Bedrock under Snow

• In shallow soils under 
snow, infiltration into 
bedrock is influenced 
by
– Soil storage and 

whether soil is 
frozen

– Snowmelt rate vs. 
bedrock conductivity

– Properties of 
fractures and 
fracture fill, wetting 
front potential of 
bedrock matrix

– Under ponded 
conditions, drainage 
should equal bulk 
bedrock permeability
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Dana Soil Water Content and Stage at Tuolumne at GCDana Soil Water Content and Stage at Tuolumne at GC
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Dana Soil Water Content and Stage at Tuolumne at GCDana Soil Water Content and Stage at Tuolumne at GC
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Soil water summarySoil water summary

• Active hydrologic processes 
occurring above and below 
snow pack

• There are very similar 
processes happening at very 
different locations

• Knowing soil moisture status 
prior to melt may be important 
for time and amount of 
streamflow
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ObjectiveObjective

• Downscale a regional water 
balance model to southern Sierra 
basins
– Incorporate processes at a scale that 

allows for the more detailed influence 
of topographic shading and changes 
in solar radiation load (270m to 90m 
or 30m) for current climate

– Monthly to daily (with hourly radiation)
• Refine model to correct 

streamflow predictions to account 
for radiation
– Simple as Snow-17 but with the 

added radiation term (as air 
temperature enhancement)
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Recharge and RunoffRecharge and Runoff
• Basin Characterization Model (BCM)

– run in FORTRAN
– uses grid-based data
– calculates in-place recharge or generated 

runoff
• Potential evapotranspiration (Priestley-

Taylor)
– hourly solar radiation modeled using 

topographic shading and cloudiness
– vegetation density

• Snow accumulation and melt based on NWS 
Snow-17 Model

• Soils (STATSGO): hydraulic properties and 
depth determine soil storage

• Geology is used to estimate bedrock 
permeability

• Precipitation and air temperature is 
available using PRISM datasets or spatially
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(mm/yr)(mm/yr)
< 0.01< 0.01
0.1 - 10.1 - 1
1 - 51 - 5
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30 - 4030 - 40
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50 - 7550 - 75
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Average Annual SnowpackAverage Annual Snowpack
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Solar Radiation
(March 1 – April 1)
Solar Radiation
(March 1 – April 1)

• Steep north-facing slopes show an 
increase in radiation of up to 95 
percent 

• Most slopes have a 25-50 percent 
increase in radiation 

• Steep south-facing slopes have a 
reduction in radiation
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Work in ProgressWork in Progress
• Refining BCM to a daily time step and 

adding radiation function to snowmelt 
module

• Calibrate daily model to snow cover 
and SWE from MODIS and from Tripod 
LiDAR

• Calibrate daily model to high country 
runoff measurements and total basin 
discharge into 5 reservoirs

• Incorporate soil moisture model and 
daily evapotranspiration

• Downscaling future climate scenarios 
to BCM scale (270-m is complete for 
GFDL-A2, 3 to go at this scale for US)
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Spatial 
Distribution of 
Station Data

Spatial 
Distribution of 
Station Data

• Correlating 
deterministic data to 
elevation improves the 
spatial distribution of 
sparse data such as air 
temperature and 
precipitation

• Gradient-inverse-
distance-squared 
regression technique 
develops equations for 
every day with all 
available data using 
station data, elevation, 
location (distance 
between stations)
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• Daily gradient-inverse-
distance-squared 
regressions are 
conditioned by monthly 
PRISM data to provide 
more information on 
spatial structure of 
precipitation between 
stations

• Models that accumulate 
snow correctly and as 
important as models 
that melt snow

• Both precipitation and 
air temperature 
distribution necessary 
(radiation is predictable)
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Testing the Soil/Snowmelt model using 
Climate Change Scenarios

Testing the Soil/Snowmelt model using 
Climate Change Scenarios

• State of California is using four “families” of emission 
scenarios to investigate possible future climate 
changes

• IPCC Fourth climate assessment provides recent 
model simulations

• Geophysical Fluid Dynamics Lab (GFDL), and NCAR’s
Parallel Climate Model (PCM)
– A2: medium-high emissions
– B1: low emissions
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Climate Change ScenariosClimate Change Scenarios
• Climate model data at 2.5 degree 

resolution were downscaled to 1/8 
degree, 12-km using a constructed 
analogues method by Hidalgo et al. 
(2007)

• These data were further 
downscaled to 4-km using a 
gradient-inverse-distance-squared 
(GIDS) method

• Statistical transformation was used 
to ensure that the climate model 
and historical data have similar 
statistical properties: the mean and 
standard deviation of the 
measured1970-2000 period were 
used for corrections compared to 
the 1950-2000 modern climate 
model

• Data was further downscaled to 
270-m using GIDS for model 
application
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Climate Change ScenariosClimate Change Scenarios

• Apply the daily downscaled maps of precipitation, 
minimum and maximum air temperature to the Sierra 
Nevada
– Look for early spring snow melt
– Look for increase spatial variability of snowmelt
– Look for the occurrence of snow on dry soils

• Are the other significant issues that arise as a 
consequence of climate change that would 
cause us to re-evaluate our soil moisture/snow 
melt modeling?
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Upper Tuolumne Basin GFDL A2Upper Tuolumne Basin GFDL A2
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Upper Tuolumne Basin GFDL A2Upper Tuolumne Basin GFDL A2

Tuolumne River, California
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Summary Summary 

• Antecedent soil moisture may have a role in predicting 
spring runoff
– Future climate model would suggest late fall rain 

rather than snow due to increased warming may 
reduce the significance of this issue

• Increased warming may lead to early snow melt 
making variable radiation loads contribute more to 
variable snow melt

• TLidar and UVASAR may provide a new way to do 
detailed snow melt surveys and high elevation/remote 
surveys

• Future climate change is here and testing our model 
and the hydrologic system will provide us insight and 
scenarios for management evaluation
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